Die fehlende Nummer überarbeitet

22

Hintergrund:

Ich habe diese Frage gestern Abend ursprünglich gepostet und eine Antwort auf ihre Unbestimmtheit erhalten. Ich habe seitdem viele Mitarbeiter nicht nur zum Wortlaut des Problems befragt, sondern auch zu seiner Komplexität (die nicht O (1) ist). Dieses Programmierproblem ist eine böse Wendung in einer Amazon-Interviewfrage.

Frage:

Bei einer Folge von zufällig verketteten ganzen Zahlen (0, 250), 0 bis 250 exklusiv, fehlt EINE Zahl in der Folge. Ihre Aufgabe ist es, ein Programm zu schreiben, das diese fehlende Zahl berechnet. Es gibt keine anderen fehlenden Zahlen in der Sequenz außer der einen, und das macht dieses Problem so schwierig und möglicherweise rechenintensiv.

Dieses Problem von Hand mit kleineren Zeichenfolgen wie den Beispielen 1 und 2 zu lösen, ist offensichtlich sehr einfach. Umgekehrt wäre die Berechnung einer fehlenden Zahl für unglaublich große Datensätze mit dreistelligen oder vierstelligen Zahlen unglaublich schwierig. Die Idee hinter diesem Problem ist, ein Programm zu erstellen, das diesen Prozess für Sie erledigt.

Wichtige Informationen:

Eine Sache, die als ziemlich verwirrend erschien, als ich dieses Problem letzte Nacht postete, war: als was genau eine fehlende Zahl definiert wird. Eine fehlende Nummer ist die Nummer INNERHALB des oben angegebenen Bereichs. NICHT unbedingt die Ziffer. In Beispiel 3 sehen Sie, dass die fehlende Zahl 9 ist, obwohl sie in der Sequenz erscheint. Es gibt 3 Stellen, an denen DIGIT 9 in einer Reihe von [0, 30] angezeigt wird: "9", "19" und "29". Ihr Ziel ist es, zwischen diesen zu unterscheiden und herauszufinden, dass 9 die fehlende NUMMER ist (in Beispiel 3). Mit anderen Worten, der schwierige Teil besteht darin, herauszufinden, welche Ziffernfolgen vollständig sind und welche zu anderen Zahlen gehören.

Eingang:

Die Eingabe ist eine Zeichenfolge S, die Ganzzahlen von 0 bis 249 (einschließlich) oder 0 bis 250 (ausschließlich) enthält (mit anderen Worten [0, 250]). Diese ganzen Zahlen werden, wie oben angegeben, zu einer zufälligen Folge zusammengesetzt. Es gibt KEINE Begrenzer ("42, 31, 23, 44") oder Auffüllungs-Nullen (003076244029002). Die Probleme sind genau wie in den Beispielen beschrieben. Es ist garantiert, dass es nur 1 Lösung für die tatsächlichen Probleme gibt. Mehrfachlösungen sind hierfür nicht zulässig.

Gewinnkriterien:

Wer die schnellste und niedrigste Speichernutzung hat, gewinnt. In dem wunderbaren Fall, dass eine Zeit bindet, wird weniger Speicher für den Zeitbrecher verwendet. Bitte listen Sie Big O auf, wenn Sie können!

Beispiele:

Die Beispiele 1 und 2 haben einen Bereich von [0, 10)

Die Beispiele 3 und 4 haben einen Bereich von [0, 30]

(Die Beispiele 1 bis 4 dienen nur zur Veranschaulichung. Ihr Programm muss sie nicht verarbeiten.)

Beispiele 5 haben einen Bereich von [0, 250]

1. 420137659    
- Missing number => 8

2. 843216075    
- Missing number => 9  

3. 2112282526022911192312416102017731561427221884513 
- Missing number => 9

4. 229272120623131992528240518810426223161211471711
- Missing number => 15

5. 11395591741893085201244471432361149120556162127165124233106210135320813701207315110246262072142253419410247129611737243218190203156364518617019864222241772384813041175126193134141008211877147192451101968789181153241861671712710899168232150138131195104411520078178584419739178522066640145139388863199146248518022492149187962968112157173132551631441367921221229161208324623423922615218321511111211121975723721911614865611197515810239015418422813742128176166949324015823124214033541416719143625021276351260183210916421672722015510117218224913320919223553222021036912321791591225112512304920418584216981883128105227213107223142169741601798025
- Missing number => 71

Test Data: 

Problem 1: 6966410819610521530291368349682309217598570592011872022482018312220241246911298913317419721920718217313718080857232177134232481551020010112519172652031631113791105122116319458153244261582135510090235116139611641267691141679612215222660112127421321901862041827745106522437208362062271684640438174315738135641171699510421015199128239881442242382361212317163149232839233823418915447142162771412092492141987521710917122354156131466216515061812273140130240170972181176179166531781851152178225242192445147229991613515911122223419187862169312013124150672371432051192510724356172282471951381601241518410318414211212870941111833193145123245188102

Problem 2: 14883423514241100511108716621733193121019716422221117630156992324819917158961372915140456921857371883175910701891021877194529067191198226669314940125152431532281961078111412624224113912011621641182322612016512820395482371382385363922471472312072131791925510478122073722091352412491272395020016194195116236186596116374117841971602259812110612913254255615723013185162206245183244806417777130181492211412431591541398312414414582421741482461036761192272120204114346205712198918190242184229286518011471231585109384415021021415522313136146178233133168222201785172212108182276835832151134861116216716910511560240392170208215112173234136317520219

Problem 3: 1342319526198176611201701741948297621621214122224383105148103846820718319098731271611601912137231471099223812820157162671720663139410066179891663131117186249133125172622813593129302325881203242806043154161082051916986441859042111711241041590221248711516546521992257224020174102234138991752117924457143653945184113781031116471120421331506424717816813220023315511422019520918114070163152106248236222396919620277541101222101232171732231122301511263822375920856142187182152451585137352921848164219492411071228936130762461191564196185114910118922611881888513917712153146227193235347537229322521516718014542248813617191531972142714505519240144

Problem 4: 2492402092341949619347401841041875198202182031161577311941257285491521667219229672211881621592451432318618560812361201172382071222352271769922013259915817462189101108056130187233141312197127179205981692121101632221732337196969131822110021512524417548627103506114978204123128181211814236346515430399015513513311152157420112189119277138882021676618323919018013646200114160165350631262167910238144334214230146151171192261653158161213431911401452461159313720613195248191505228186244583455139542924222112226148941682087115610915344641782142472102436810828123731134321131241772242411722251997612923295223701069721187182171471055710784170217851
DerProgrammierer
quelle
1
Klarstellung: Ich sehe, dass Sie den schnellsten Algorithmus markiert haben , aber es ist ein bisschen unklar in der Beschreibung. Ist diese Herausforderung der schnellste Algorithmus (wie in, geringste Zeitkomplexität) oder der schnellste Code (wie in, geringste Zeit auf einem bestimmten Computer)?
JungHwan Min
2
Muss das Programm auch Werte von unterstützen N, nicht nur 250? / Was ist mit dem 232Problem? Alle Möglichkeiten oder eine? Mir ist klar, dass Sie über dieses Problem Bescheid wussten, aber ich finde es in der Frage unklar. / Wenn dies der schnellste Code ist, muss es eine Möglichkeit geben, sie zu messen. Natürlich unterscheidet sich die Ausführung auf einem Supercomputer von der Ausführung auf einem alten Computer. / Weil das niemand gesagt hat, - Willkommen bei PPCG!
user202729
1
Dies ist ein faszinierendes Problem, aber (zumindest in Bezug auf die bisherigen Antworten) zu trivial, um eine ausreichende Komplexität der Berechnungen zu erreichen, um die Antworten sinnvoll voneinander unterscheiden zu können, um einen Gewinner zu bestimmen, der ein Mist ist.
AdmBorkBork
1
@ JoshuaCrotts Sie konnten immer erhöhen N, um 1000 oder 10000 zu sagen.
Οurous
4
Herzlichen Glückwunsch zu PPCG post # 150,000;)
ETHproductions

Antworten:

10

Clingo , 0,03 Sekunden

Dies ist zu schnell, um genau gemessen zu werden. Sie müssen größere Eingabefälle zulassen, anstatt bei 250 künstlich anzuhalten.

% cat(I) means digits I and I+1 are part of the same number.
{cat(I)} :- digit(I, D), digit(I+1, E).

% prefix(I, X) means some digits ending at I are part of the same
% number prefix X.
prefix(I, D) :- digit(I, D), not cat(I-1), D < n.
prefix(I, 10*X+D) :- prefix(I-1, X), digit(I, D), cat(I-1), X > 0, 10*X+D < n.

% Every digit is part of some prefix.
:- digit(I, D), {prefix(I, X)} = 0.

% If also not cat(I), then this counts as an appearance of the number
% X.
appears(I, X) :- prefix(I, X), not cat(I).

% No number appears more than once.
:- X=0..n-1, {appears(I, X)} > 1.

% missing(X) means X does not appear.
missing(X) :- X=0..n-1, {appears(I, X)} = 0.

% Exactly one number is missing.
:- {missing(X)} != 1.

#show missing/1.

Beispiel Eingabe

Die Eingabe ist eine Liste von ( k , k- te Stelle) Paaren. Hier ist Problem 1:

#const n = 250.
digit(0,6;1,9;2,6;3,6;4,4;5,1;6,0;7,8;8,1;9,9;10,6;11,1;12,0;13,5;14,2;15,1;16,5;17,3;18,0;19,2;20,9;21,1;22,3;23,6;24,8;25,3;26,4;27,9;28,6;29,8;30,2;31,3;32,0;33,9;34,2;35,1;36,7;37,5;38,9;39,8;40,5;41,7;42,0;43,5;44,9;45,2;46,0;47,1;48,1;49,8;50,7;51,2;52,0;53,2;54,2;55,4;56,8;57,2;58,0;59,1;60,8;61,3;62,1;63,2;64,2;65,2;66,0;67,2;68,4;69,1;70,2;71,4;72,6;73,9;74,1;75,1;76,2;77,9;78,8;79,9;80,1;81,3;82,3;83,1;84,7;85,4;86,1;87,9;88,7;89,2;90,1;91,9;92,2;93,0;94,7;95,1;96,8;97,2;98,1;99,7;100,3;101,1;102,3;103,7;104,1;105,8;106,0;107,8;108,0;109,8;110,5;111,7;112,2;113,3;114,2;115,1;116,7;117,7;118,1;119,3;120,4;121,2;122,3;123,2;124,4;125,8;126,1;127,5;128,5;129,1;130,0;131,2;132,0;133,0;134,1;135,0;136,1;137,1;138,2;139,5;140,1;141,9;142,1;143,7;144,2;145,6;146,5;147,2;148,0;149,3;150,1;151,6;152,3;153,1;154,1;155,1;156,3;157,7;158,9;159,1;160,1;161,0;162,5;163,1;164,2;165,2;166,1;167,1;168,6;169,3;170,1;171,9;172,4;173,5;174,8;175,1;176,5;177,3;178,2;179,4;180,4;181,2;182,6;183,1;184,5;185,8;186,2;187,1;188,3;189,5;190,5;191,1;192,0;193,0;194,9;195,0;196,2;197,3;198,5;199,1;200,1;201,6;202,1;203,3;204,9;205,6;206,1;207,1;208,6;209,4;210,1;211,2;212,6;213,7;214,6;215,9;216,1;217,1;218,4;219,1;220,6;221,7;222,9;223,6;224,1;225,2;226,2;227,1;228,5;229,2;230,2;231,2;232,6;233,6;234,0;235,1;236,1;237,2;238,1;239,2;240,7;241,4;242,2;243,1;244,3;245,2;246,1;247,9;248,0;249,1;250,8;251,6;252,2;253,0;254,4;255,1;256,8;257,2;258,7;259,7;260,4;261,5;262,1;263,0;264,6;265,5;266,2;267,2;268,4;269,3;270,7;271,2;272,0;273,8;274,3;275,6;276,2;277,0;278,6;279,2;280,2;281,7;282,1;283,6;284,8;285,4;286,6;287,4;288,0;289,4;290,3;291,8;292,1;293,7;294,4;295,3;296,1;297,5;298,7;299,3;300,8;301,1;302,3;303,5;304,6;305,4;306,1;307,1;308,7;309,1;310,6;311,9;312,9;313,5;314,1;315,0;316,4;317,2;318,1;319,0;320,1;321,5;322,1;323,9;324,9;325,1;326,2;327,8;328,2;329,3;330,9;331,8;332,8;333,1;334,4;335,4;336,2;337,2;338,4;339,2;340,3;341,8;342,2;343,3;344,6;345,1;346,2;347,1;348,2;349,3;350,1;351,7;352,1;353,6;354,3;355,1;356,4;357,9;358,2;359,3;360,2;361,8;362,3;363,9;364,2;365,3;366,3;367,8;368,2;369,3;370,4;371,1;372,8;373,9;374,1;375,5;376,4;377,4;378,7;379,1;380,4;381,2;382,1;383,6;384,2;385,7;386,7;387,1;388,4;389,1;390,2;391,0;392,9;393,2;394,4;395,9;396,2;397,1;398,4;399,1;400,9;401,8;402,7;403,5;404,2;405,1;406,7;407,1;408,0;409,9;410,1;411,7;412,1;413,2;414,2;415,3;416,5;417,4;418,1;419,5;420,6;421,1;422,3;423,1;424,4;425,6;426,6;427,2;428,1;429,6;430,5;431,1;432,5;433,0;434,6;435,1;436,8;437,1;438,2;439,2;440,7;441,3;442,1;443,4;444,0;445,1;446,3;447,0;448,2;449,4;450,0;451,1;452,7;453,0;454,9;455,7;456,2;457,1;458,8;459,1;460,1;461,7;462,6;463,1;464,7;465,9;466,1;467,6;468,6;469,5;470,3;471,1;472,7;473,8;474,1;475,8;476,5;477,1;478,1;479,5;480,2;481,1;482,7;483,8;484,2;485,2;486,5;487,2;488,4;489,2;490,1;491,9;492,2;493,4;494,4;495,5;496,1;497,4;498,7;499,2;500,2;501,9;502,9;503,9;504,1;505,6;506,1;507,3;508,5;509,1;510,5;511,9;512,1;513,1;514,1;515,2;516,2;517,2;518,2;519,3;520,4;521,1;522,9;523,1;524,8;525,7;526,8;527,6;528,2;529,1;530,6;531,9;532,3;533,1;534,2;535,0;536,1;537,3;538,1;539,2;540,4;541,1;542,5;543,0;544,6;545,7;546,2;547,3;548,7;549,1;550,4;551,3;552,2;553,0;554,5;555,1;556,1;557,9;558,2;559,5;560,1;561,0;562,7;563,2;564,4;565,3;566,5;567,6;568,1;569,7;570,2;571,2;572,8;573,2;574,4;575,7;576,1;577,9;578,5;579,1;580,3;581,8;582,1;583,6;584,0;585,1;586,2;587,4;588,1;589,5;590,1;591,8;592,4;593,1;594,0;595,3;596,1;597,8;598,4;599,1;600,4;601,2;602,1;603,1;604,2;605,1;606,2;607,8;608,7;609,0;610,9;611,4;612,1;613,1;614,1;615,1;616,8;617,3;618,3;619,1;620,9;621,3;622,1;623,4;624,5;625,1;626,2;627,3;628,2;629,4;630,5;631,1;632,8;633,8;634,1;635,0;636,2).

Beispielausgabe

$ clingo missing.lp problem1.lp 
clingo version 5.2.2
Reading from missing.lp ...
Solving...
Answer: 1
missing(148)
SATISFIABLE

Models       : 1+
Calls        : 1
Time         : 0.032s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time     : 0.032s
Anders Kaseorg
quelle
Diese Lösung scheint in vielen Fällen eine falsche Antwort zu geben, zB 45879362100mit n = 11und ohne 1(Antworten missing(0)).
Politza
@politza behoben. Sollte ich auch die unausgesprochene Annahme hinzufügen, dass keine Nummer wiederholt wird (sonst missing(10)gilt das auch)?
Anders Kaseorg
Ich erhalte immer noch falsche Ergebnisse, z . B. in diesem Fall .
Politza
Würde es Ihnen etwas ausmachen, ein oder zwei Sätze über die Ideen hinter Ihrem Modell zu schreiben?
Politza
@politza Richtig, es stellt sich heraus, dass die angegebenen Tests auf der oben genannten Annahme beruhen, also habe ich sie hinzugefügt. Das überarbeitete Programm liefert auch auf Ihrer Instanz ein einzigartiges Ergebnis. (Aber ich würde es trotzdem begrüßen, wenn die Annahme in der Frage ausdrücklich genannt würde.)
Anders Kaseorg,
9

C ++, 5000 zufällige Testfälle in 6,1 Sekunden

Dies ist praktisch schnell, aber es gibt möglicherweise einige Testfälle, die es langsam machen. Komplexität unbekannt.

Wenn es mehrere Lösungen gibt, werden alle gedruckt. Beispiel .

Erläuterung:

  1. Zählen Sie die Vorkommen von Ziffern.

  2. Listen Sie alle möglichen Antworten auf.

  3. Überprüfen Sie, ob ein Kandidat eine gültige Antwort ist:

    3-1. Versuchen Sie, die Zeichenfolge (n) durch Zahlen zu teilen, die nur einmal vorkommen, und markieren Sie sie als identifiziert, mit Ausnahme des Kandidaten.
    Hat zum Beispiel 2112282526022911192312416102017731561427221884513nur einen 14, so kann er in 211228252602291119231241610201773156und aufgeteilt werden 27221884513.

    3-2. Wenn eine geteilte Zeichenfolge die Länge 1 hat, markieren Sie sie als identifiziert.
    Wenn ein Widerspruch vorliegt (mehrmals identifiziert), ist der Kandidat ungültig.
    Wenn wir den Kandidaten in der Zeichenfolge nicht finden können, ist der Kandidat gültig.

    3-3. Wenn eine Teilung vorgenommen wird, wiederholen Sie Schritt 3-1. Führen Sie andernfalls eine Brute-Force-Suche durch, um zu überprüfen, ob der Kandidat gültig ist.

#include <cmath>
#include <bitset>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>

const int VAL_MAX = 250;
const int LOG_MAX = log10(VAL_MAX - 1) + 1;
using bools = std::bitset<VAL_MAX>;

std::pair<size_t, size_t> count(const std::string& str, const std::string& target)
{
    size_t ans = 0, offset = 0, pos = std::string::npos;
    for (; (offset = str.find(target, offset)) != std::string::npos; ans++, pos = offset++);
    return std::make_pair(ans, pos);
}

bool dfs(size_t a, size_t b, const std::vector<std::string>& str, bools& cnt, int t)
{ // input: string id, string position, strings, identified, candidate
    if (b == str[a].size()) a++, b = 0;
    if (a == str.size()) return true;   // if no contradiction on all strings, the candidate is valid

    int p = 0;
    for (int i = 0; i < LOG_MAX; i++) { // assume str[a][b...b+i] is a number
        if (str[a].size() == b) break;
        p = p * 10 + (str[a][b++] ^ '0');
        if (p < VAL_MAX && !cnt[p] && p != t) { //if no contradiction
            cnt[p] = true;
            if (dfs(a, b, str, cnt, t)) return true; // recursively check
            cnt[p] = false;
        }
    }
    return false;
}

struct ocr {
    int l, r, G;
    bool operator<(const ocr& i) const { return l > i.l; }
};

int cal(std::vector<std::string> str, bools cnt, int t)
{ // input: a list of strings, whether a number have identified, candidate
  // try to find numbers that only occur once in those strings
    int N = str.size();
    std::vector<ocr> pos;

    for (int i = 0; i < VAL_MAX; i++) {
        if (cnt[i]) continue;             // try every number which haven't identified
        int flag = 0;
        std::string target = std::to_string(i);
        ocr now;
        for (int j = 0; j < N; j++) {     // count occurences
            auto c = count(str[j], target);
            if ((flag += c.first) > 1) break;
            if (c.first) now = {c.second, c.second + target.size(), j};
        }
        if (!flag && t == i) return true; // if cannot find the candidate, then it is valid
        if (i != t && flag == 1) pos.push_back(now), cnt[i] = true;
        // if only occur once, then its position is fixed, mark as identified
    }
    if (!pos.size()) { // if no number is identified, do a brute force search
        std::sort(str.begin(), str.end(), [](const std::string& a, const std::string& b){return a.size() < b.size();});
        return dfs(0, 0, str, cnt, t);
    }

    std::sort(pos.begin(), pos.end());
    std::vector<std::string> lst;
    for (auto& i : pos) {      // split strings by identified numbers
        if ((size_t)i.r > str[i.G].size()) return false;
        std::string tmp = str[i.G].substr(i.r);
        if (tmp.size() == 1) { // if split string has length 1, it is identified
            if (cnt[tmp[0] ^ '0']) return false; // contradiction if it is identified before
            cnt[tmp[0] ^ '0'] = true;
        }
        else if (tmp.size()) lst.push_back(std::move(tmp));
        str[i.G].resize(i.l);
    }
    for (auto& i : str) { // push the remaining strings; same as above
        if (i.size() == 1) {
            if (cnt[i[0] ^ '0']) return false;
            cnt[i[0] ^ '0'] = true;
        }
        else if (i.size()) lst.push_back(std::move(i));
    }
    return cal(lst, cnt, t); // continue the split step with new set of strings
}

int main()
{
    std::string str;
    std::vector<ocr> pos;
    std::vector<int> prob;
    std::cin >> str;

    int p[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    for (int i = 0; i < VAL_MAX; i++)
        for (char j : std::to_string(i)) p[j ^ '0']++;
    for (char i : str) p[i ^ '0']--; // count digit occurrences
    {
        std::string tmp;
        for (int i = 0; i < 10; i++)
            while (p[i]--) tmp.push_back(i ^ '0');
        do {           // list all possible candidates (at most 4)
            int c = std::stoi(tmp);
            if (c < VAL_MAX && tmp[0] != '0') prob.push_back(c);
        } while (std::next_permutation(tmp.begin(), tmp.end()));
    }
    if (prob.size() == 1) { std::cout << prob[0] << '\n'; return 0; }
                       // if only one candidate, output it
    for (int i : prob) // ... or check if each candidate is valid
        if (cal({str}, bools(), i)) std::cout << i << '\n';
}

Probieren Sie es online!

Colera Su
quelle
6

Sauber , ~ 0,3s

Es wurde ein großer Fehler im Algorithmus behoben, der jetzt erneut optimiert werden musste.

module main
import StdEnv
import StdLib
import System.CommandLine

maxNum = 250
sample = "11395591741893085201244471432361149120556162127165124233106210135320813701207315110246262072142253419410247129611737243218190203156364518617019864222241772384813041175126193134141008211877147192451101968789181153241861671712710899168232150138131195104411520078178584419739178522066640145139388863199146248518022492149187962968112157173132551631441367921221229161208324623423922615218321511111211121975723721911614865611197515810239015418422813742128176166949324015823124214033541416719143625021276351260183210916421672722015510117218224913320919223553222021036912321791591225112512304920418584216981883128105227213107223142169741601798025"
case1 = "6966410819610521530291368349682309217598570592011872022482018312220241246911298913317419721920718217313718080857232177134232481551020010112519172652031631113791105122116319458153244261582135510090235116139611641267691141679612215222660112127421321901862041827745106522437208362062271684640438174315738135641171699510421015199128239881442242382361212317163149232839233823418915447142162771412092492141987521710917122354156131466216515061812273140130240170972181176179166531781851152178225242192445147229991613515911122223419187862169312013124150672371432051192510724356172282471951381601241518410318414211212870941111833193145123245188102"
case2 = "14883423514241100511108716621733193121019716422221117630156992324819917158961372915140456921857371883175910701891021877194529067191198226669314940125152431532281961078111412624224113912011621641182322612016512820395482371382385363922471472312072131791925510478122073722091352412491272395020016194195116236186596116374117841971602259812110612913254255615723013185162206245183244806417777130181492211412431591541398312414414582421741482461036761192272120204114346205712198918190242184229286518011471231585109384415021021415522313136146178233133168222201785172212108182276835832151134861116216716910511560240392170208215112173234136317520219"
case3 = "1342319526198176611201701741948297621621214122224383105148103846820718319098731271611601912137231471099223812820157162671720663139410066179891663131117186249133125172622813593129302325881203242806043154161082051916986441859042111711241041590221248711516546521992257224020174102234138991752117924457143653945184113781031116471120421331506424717816813220023315511422019520918114070163152106248236222396919620277541101222101232171732231122301511263822375920856142187182152451585137352921848164219492411071228936130762461191564196185114910118922611881888513917712153146227193235347537229322521516718014542248813617191531972142714505519240144"
case4 = "2492402092341949619347401841041875198202182031161577311941257285491521667219229672211881621592451432318618560812361201172382071222352271769922013259915817462189101108056130187233141312197127179205981692121101632221732337196969131822110021512524417548627103506114978204123128181211814236346515430399015513513311152157420112189119277138882021676618323919018013646200114160165350631262167910238144334214230146151171192261653158161213431911401452461159313720613195248191505228186244583455139542924222112226148941682087115610915344641782142472102436810828123731134321131241772242411722251997612923295223701069721187182171471055710784170217851"

failing = "0102030405060708090100101102103104105106107108109110120130140150160170180190200201202203204205206207208209210220230240249248247246245244243242241239238237236235234233232229228227226225224223222221219218217216215214213212211199198197196195194193192191189188187186185184183182181179178177176175174173172171169168167166165164163162161159158157156155154153152151149148147146145144143142141139138137136135134133132131129128127126125124123122121119118117116115114113112111999897969594939291898887868584838281797877767574737271696867666564636261595857565554535251494847464544434241393837363534333231292827262524232221191817161514131211987654321"

dupes = "19050151158951391658227781234527110196235731198137214733126868520474181772192213718517314542182652441211742304719519143231236593134207203121171237201705111617211824810013324511511436253946122155201534113626129692410611318356178791080921122151321949681166200188841675156120546124912883216212189712281541382202411041372421642917614416870223753814121124318415710310515010682172099012716167102179894920613516297239186222232225635312262134019719915382229399107111802082341491811011604815220291125247641482401691871755205639495788414314011714616366130175601931092467744819271230159131158714761192105218019822421812423322919341426216523821428232"

:: Position :== [Int]
:: Positions :== [Position]
:: Digit :== (Char, Int)
:: Digits :== [Digit]
:: Number :== ([Char], Positions)
:: Numbers :== [Number]
:: Complete :== (Numbers, [Digits])

numbers :: [[Char]]
numbers = [fromString (toString n) \\ n <- [0..(maxNum-1)]]

candidates :: [Char] -> [[Char]]
candidates chars
    = moreCandidates chars []
where
    moreCandidates :: [Char] [[Char]] -> [[Char]]
    moreCandidates [] nums
        = removeDup (filter (\num = isMember num numbers) nums)
    moreCandidates chars []
        = flatten [moreCandidates (removeAt i chars) [[c]] \\ c <- chars & i <- [0..]]
    moreCandidates chars nums
        = flatten [flatten [moreCandidates (removeAt i chars) [ [c : num] \\ num <- nums ]] \\  c <- chars & i <- [0..]]

singletonSieve :: Complete -> Complete
singletonSieve (list, sequence)
    | (list_, sequence_) == (list, sequence)
        = reverseSieve (list, sequence)
    = (list_, sequence_)
where
    singles :: Numbers
    singles 
        = filter (\(_, i) = length i == 1) list
    list_ :: Numbers
    list_
        = [(a, filter (\n = not (isAnyMember n (flatten [flatten b_ \\ (a_, b_) <- singles | a_ <> a]))) b) \\ (a, b) <- list]
    sequence_ :: [Digits]
    sequence_
        = foldr splitSequence sequence (flatten (snd (unzip singles)))

reverseSieve :: Complete -> Complete
reverseSieve (list, sequence)
    # sequence
        = foldr splitSequence sequence (flatten (snd (unzip singles)))
    # list
        = [(a, filter (\n = not (isAnyMember n (flatten [flatten b_ \\ (a_, b_) <- singles | a_ <> a]))) b) \\ (a, b) <- list]
    # list
        = [(a, filter (\n = or [any (isPrefixOf n) (tails subSeq) \\ subSeq <- map (snd o unzip) sequence]) b) \\ (a, b) <- list]
    = (list, sequence)
where
    singles :: Numbers
    singles
        = [(a, i) \\ (a, b) <- list, i <- [[subSeq \\ subSeq <- map (snd o unzip) sequence | isMember subSeq b]] | length i == 1]


splitSequence :: Position [Digits] -> [Digits]
splitSequence split sequence
    = flatten [if(isEmpty b) [a] [a, drop (length split) b] \\ (a, b) <- [span (\(_, i) = not (isMember i split)) subSeq \\ subSeq <- sequence] | [] < max a b]

indexSubSeq :: [Char] Digits -> Positions
indexSubSeq _ []
    = []
indexSubSeq a b
    # remainder
        = indexSubSeq a (tl b)
    | startsWith a b
        = [[i \\ (_, i) <- take (length a) b] : remainder]
    = remainder
where
    startsWith :: [Char] Digits -> Bool
    startsWith _ []
        = False
    startsWith [] _
        = False
    startsWith [a] [(b,_):_]
        = a == b
    startsWith [a:a_] [(b,_):b_]
        | a == b
            = startsWith a_ b_
        = False

missingNumber :: String -> [[Char]]
missingNumber string
    # string
        = [(c, i) \\ c <-: string & i <- [0..]]
    # locations
        = [(number, indexSubSeq number string) \\ number <- numbers]
    # digits
        = [length (indexSubSeq [number] [(c, i) \\ c <- (flatten numbers) & i <- [0..]]) \\ number <-: "0123456789"]
    # missing
        = (flatten o flatten) [repeatn (y - length b) a \\ y <- digits & (a, b) <- locations]
    # (answers, _)
        = hd [e \\ e <- iterate singletonSieve (locations, [string]) | length (filter (\(a, b) = (length b == 0) && (isMember a (candidates missing))) (fst e)) > 0]
    # answers
        = filter (\(_, i) = length i == 0) answers
    = filter ((flip isMember)(candidates missing)) ((fst o unzip) answers)


Start world
    # (args, world)
        = getCommandLine world
    | length args < 2
        = abort "too few arguments\n"
    = flatlines [foldr (\num -> \str = if(isEmpty str) num (num ++ [',' : str]) ) [] (missingNumber arg) \\ arg <- tl args]

Kompilieren mit clm -h 1024M -s 16M -nci -dynamics -fusion -t -b -IL Dynamics -IL Platform main

Dies funktioniert, indem jede Zahl genommen wird, die die Zeichenfolge enthalten muss, und die Anzahl der Stellen gezählt wird, an denen die erforderliche Ziffernfolge in der Zeichenfolge vorhanden ist. Es werden dann wiederholt die folgenden Schritte ausgeführt:

  • Wenn die Zahl keine möglichen Positionen hat, ist das die Antwort
  • Entferne jede Zahl mit einer möglichen Position (nenne diese singles)
  • Entferne jede Position von allen verbleibenden Zahlen, die sich mit den Positionen der zuvor entfernten Zahlen (der singles) überschneiden.
Οurous
quelle
1
Das Ausführen eines Programms mit fest codierter Eingabe kann ein fragwürdiger Weg sein, dies zu vergleichen: Was ist, wenn der Compiler die gesamte Berechnung optimiert und eine Binärdatei schreibt, die lediglich ein vorberechnetes Ergebnis ausgibt? (Ich weiß nicht, ob der Clean-Compiler so schlau ist, aber ich habe gute Dinge darüber gehört.)
Anders Kaseorg
2
Sie ... haben einen sehr guten Punkt. Ich habe nachgesehen und genau das tut es. Ich werde die Antwort ändern.
10urous
Wissen Sie, ob es möglich ist, dies auf TIO zum Laufen zu bringen? ( Mein Versuch )
Anders Kaseorg
1
@AndersKaseorg Derzeit arbeite ich noch mit Dennis daran, dass alle Bibliotheken mit TIO funktionieren. Den ungefähren Kontext finden Sie hier . Grundsätzlich funktioniert es im Moment nicht, wenn es mehr als StdEnv + Dynamics benötigt.
Urous
Wenn ich es lokal laufen lasse, erhalte ich "mehrere Lösungen" für das gegebene Problem 2. (Außerdem sind 2 Mikrosekunden eine verdächtige Laufzeit - sind Sie sicher, dass Sie nicht Millisekunden gemeint haben? Ich erhalte ungefähr 4 Millisekunden pro Fall auf meinem Laptop, wenn ich viele zur Verfügung stelle Fälle als Argumente für eine einzelne Hinrichtung.)
Anders Kaseorg