Der schnellste Sudoku-Löser

21

Gewinner gefunden

Es scheint, als hätten wir einen Gewinner! Sofern niemand vorhat, den derzeit schnellsten Sudoku-Löser der Welt herauszufordern, gewinnt Benutzer 53x15 mit dem erstaunlich schnellen Löser Tdoku. Für alle, die noch an ihren Solvern arbeiten, vergleiche ich immer noch neue Übermittlungen, wenn ich Zeit habe.

Die Herausforderung

Das Ziel eines Sudoku-Spiels ist es, das Spielfeld mit den Nummern 1-9 zu füllen, eine in jeder Zelle, so dass jede Zeile, Spalte und Box nur einmal jede Nummer enthält. Ein sehr wichtiger Aspekt eines Sudoku-Puzzles ist, dass es nur eine gültige Lösung geben sollte.

Das Ziel dieser Herausforderung ist einfach: Sie sollten so schnell wie möglich eine Reihe von Sudoku-Rätseln lösen. Sie werden jedoch nicht nur ein altes Sudoku lösen, sondern auch die schwierigsten Sudoku-Rätsel, die es gibt, die 17-Ahnung-Sudokus. Hier ist ein Beispiel:

Hartes Sudoku

Regeln

Sprache

Sie können jede Sprache verwenden. Wenn für Ihre Sprache kein Compiler installiert ist, sollten Sie in der Lage sein, eine Reihe von Befehlszeilenanweisungen bereitzustellen, die zum Installieren einer Umgebung erforderlich sind, in der Ihr Skript unter Linux ausgeführt werden kann .

Benchmark-Maschine

Der Benchmark wird auf einem Dell XPS 9560 mit 2,8 GHz Intel Core i7-7700HQ (3,8 GHz Boost), 4 Kernen, 8 Threads und 16 GB RAM ausgeführt. GTX 1050 4GB. Auf der Maschine läuft Ubuntu 19.04. Hier ist die unameAusgabe für alle Interessierten.

Linux 5.0.0-25-generic #26-Ubuntu SMP Thu Aug 1 12:04:58 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

Eingang

Die Eingabe erfolgt als Datei. Es kann hier gefunden werden . Die Datei enthält 49151 Sudoku-Rätsel. Die erste Zeile der Datei gibt die Anzahl der Rätsel an. Jede Zeile danach ist 81 Zeichen lang und steht für ein Rätsel. Die unbekannten Zellen sind 0und die bekannten Zellen sind 1-9.

Ihr Programm sollte in der Lage sein, den Dateinamen als Argument zu verwenden oder die Datei von STDIN einzugeben , um die manuelle Überprüfung Ihrer Lösung zu erleichtern. Bitte geben Sie an, wie Ihr Programm Eingaben macht.

Timing / Wertung

Aufgrund von Diskussionen in den Kommentaren und einigen Überlegungen wurde das Bewertungskriterium so geändert, dass es die Zeit Ihres gesamten Programms ist. Ihr Programm sollte die Ausgabedatei auch während des offiziellen Scorings mit dem richtigen Hash erzeugen. Dies beeinträchtigt keine bestehende Lösung und ändert nichts an den aktuellen Platzierungen. Alle Gedanken zum Punktesystem sind willkommen.

Wenn zwei Lösungen für einzelne Läufe ähnliche Ergebnisse erzielen, führe ich mehrere Benchmarks durch und die durchschnittliche Zeit ist das Endergebnis. Wenn sich die Durchschnittswerte um weniger als 2% unterscheiden, halte ich das für ein Unentschieden.

Wenn die Ausführung Ihrer Lösung länger als eine Stunde dauert, wird sie nicht offiziell bewertet. In diesen Fällen sind Sie dafür verantwortlich, den Computer, auf dem er ausgeführt wurde, und Ihre Punktzahl zu melden. Für einen optimierten Solver sollte dies kein Problem sein.

EDIT : Ich wurde darauf aufmerksam gemacht, dass das anstehende Problem zwar schwierig, aber nicht das schwierigste ist, das es gibt. Wenn Zeit zur Verfügung steht, werde ich versuchen, die hier vorgestellten Lösungen mit dem schwierigeren Puzzlesatz zu vergleichen und die Punktzahl zu jeder Einreichung hinzuzufügen. Dies wird jedoch keine offizielle Wertung sein und ist nur zum Spaß.

Nachprüfung

Ihre Lösung wird durch eine MD5 / SHA256-Prüfsumme verifiziert. Ihr Skript sollte in der Lage sein, eine Datei zu generieren, die alle Rätsel und ihre Lösungen enthält. Die Datei wird jedoch auch manuell überprüft. Versuchen Sie also nicht, eine Hash-Kollision zu erhalten. Ihre Ausgabedatei sollte übereinstimmen mit:

MD5: 41704fd7d8fd0723a45ffbb2dbbfa488
SHA256:0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05

Die Datei hat das Format:

<num_puzzles>
<unsolved_puzzle#1>,<solved_puzzle#1>
<unsolved_puzzle#2>,<solved_puzzle#2>
...
<unsolved_puzzle#n>,<solved_puzzle#n>

mit einem einzigen nachgestellten Zeilenumbruch.

Was ist nicht erlaubt

Es ist Ihnen in keiner Weise gestattet, Lösungen hart zu codieren . Ihr Algorithmus sollte auf alle Sudoku-Rätsel anwendbar sein, sowohl auf einfache als auch auf härtere Sudokus. Es ist jedoch völlig in Ordnung, wenn Ihre Lösung für einfachere Rätsel langsam ist.

Sie dürfen kein nicht deterministisches Programm haben . Sie können einen Zufallszahlengenerator verwenden, der Startwert des Generators sollte jedoch festgelegt sein. Diese Regel soll sicherstellen, dass die Messungen präziser sind und eine geringere Varianz aufweisen. (Danke an Peter Taylor für den Tipp)

Während der Laufzeit Ihres Programms dürfen Sie keine externen Ressourcen oder Webanforderungen verwenden. Alles sollte in sich geschlossen sein. Dies gilt nicht für installierte Bibliotheken und Pakete, die zulässig sind.

Andere Information

Wenn Sie möchten, dass ein anderer Testsatz Ihre Lösung überprüft, finden Sie hier 10000 einfachere Sudokus . Hier sind ihre Lösungen .

MD5: 3cb465ef6077c4fcab5bd6ae3bc50d62
SHA256:0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05

Wenn Sie Fragen haben, können Sie diese gerne stellen, und ich werde versuchen, etwaige Missverständnisse zu klären.

maxb
quelle
Ich habe einen APL + WIN-Solver, aber wenn Sie keine Kopie des Interpreters auf Ihrem Computer haben, müssen Sie mich ausrechnen. Zur Information hat Ihr hartes Beispiel 30 ms und das erste einfache Beispiel 16 ms gedauert.
Graham
@ Abraham dauerte es 30 ms für alle 49151 Sudokus oder 30 ms im Durchschnitt?
Maximal
Leider ist 30ms nur für das harte Beispiel. Sofern sich dies nicht lohnt, habe ich den APL-Solver nur gegen Ihr hartes Beispiel und das erste der einfachen Beispiele ausgeführt. Wenn wir aus dem harten Beispiel extrapolieren können, sehen wir ungefähr 1500 Sekunden für den vollen Satz
Graham
1
Sollten die Einträge auch Code Golf sein? Oder ... Können sie zum Spaß Golf spielen? ;-)
Der Matt
2
@TheMatt Ich würde es vorziehen, ohne Golf zu spielen, damit ich nachprüfen kann, dass nichts
faul

Antworten:

5

C ++ - 0.201s offizielle Punktzahl

Die Verwendung von Tdoku ( Code ; Design ; Benchmarks ) führt zu folgenden Ergebnissen:

~ / tdoku $ lscpu | grep Model.name
Modellbezeichnung: Intel (R) Core (TM) i7-4930K-CPU bei 3,40 GHz

~ / tdoku $ # build:
~ / tdoku $ CC = clang-8 CXX = clang ++ - 8 ./BUILD.sh
~ / tdoku $ clang -o löse example / solve.c build / libtdoku.a 

~ / tdoku $ # Eingabeformat anpassen:
~ / tdoku $ sed -e "s / 0 /./ g" all_17_clue_sudokus.txt> all_17_clue_sudokus.txt.in

~ / tdoku $ # lösen:
~ / tdoku $ time ./solve 1 <all_17_clue_sudokus.txt.in> out.txt
echte 0m0.241s
Benutzer 0m0.229s
sys 0m0.012s

~ / tdoku $ # Ausgabeformat und sha256sum anpassen:
~ / tdoku $ grep -v "^: 0: $" out.txt | sed -e "s /: 1: /, /" | tr. 0 | sha256sum
0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05 -

Tdoku wurde für harte Sudoku-Instanzen optimiert. Beachten Sie jedoch, dass im Gegensatz zur Problemstellung 17 Hinweis-Rätsel weit vom schwierigsten Sudoku entfernt sind. Tatsächlich gehören sie zu den einfachsten, wobei die meisten überhaupt kein Zurückverfolgen erfordern. Sehen Sie sich einige der anderen Benchmark-Datensätze im Tdoku-Projekt an, um herauszufinden, welche Rätsel tatsächlich schwierig sind.

Beachten Sie auch, dass Tdoku für harte Rätsel zwar der schnellste Löser ist, für 17 Hinweis-Rätsel jedoch nicht der schnellste. Für diese denke ich, ist dieses Rostprojekt, ein Derivat von JCZSolve, das während der Entwicklung für 17 Hinweisrätsel optimiert wurde , das schnellste . Abhängig von der Plattform ist es bei diesen Rätseln möglicherweise 5-25% schneller als Tdoku.

53 x 15
quelle
Wow, das war eine interessante Lektüre über die Implementierung und Theorie dahinter. Bevor ich mit dieser Herausforderung begann, wollte ich modernste Löser und Datensätze finden. Ich schätze, ich habe nicht gut genug ausgesehen. In populären "wissenschaftlichen" Artikeln waren die 17 Hinweis-Rätsel alles, worüber jemals gesprochen wurde, daher war es meine Annahme, dass dies die schwierigsten waren. Ich werde versuchen, alle Einsendungen mit den in Ihrem Artikel dargestellten Datensätzen zu vergleichen, und ich werde Ihre Einsendung noch heute bewerten. Fantastischer Job!
Maximal
Vielen Dank! Sie sehen aus dem Artikel, dass ich mich auf eine lange Reise begeben habe, um das Problem auf dem neuesten Stand der Technik zu lösen. :-) Ich verstehe, warum sich die Leute auf 17 Hinweis-Rätsel konzentrieren: Der Datensatz ist bekannt, gut definiert, vollständig oder nahezu vollständig, mittelgroß und für naive Löser schwer zu finden. Während es interessant ist, härtere Rätsel zu studieren, ist es schwierig, Härte zu formalisieren. meinen wir subjektiv oder empirisch hart für den Menschen, basierend auf den erforderlichen Techniken? meinen wir langsam im Durchschnitt für einen bestimmten Löser unter zufälligen Permutationen? Meinen wir die minimale Backdoor-Größe unter einer Formel mit ausgewählten Pigeonhole-Schlussfolgerungen? etc.
53x15
8

Node.js , 8.231s 6.735s offizielle Punktzahl

Nimmt den Dateinamen als Argument. Die Eingabedatei enthält möglicherweise bereits die Lösungen in dem in der Abfrage beschriebenen Format. In diesem Fall vergleicht das Programm sie mit seinen eigenen Lösungen.

Die Ergebnisse werden in 'sudoku.log' gespeichert .

Code

'use strict';

const fs = require('fs');

const BLOCK     = [];
const BLOCK_NDX = [];
const N_BIT     = [];
const ZERO      = [];
const BIT       = [];

console.time('Processing time');

init();

let filename = process.argv[2],
    puzzle = fs.readFileSync(filename).toString().split('\n'),
    len = puzzle.shift(),
    output = len + '\n';

console.log("File '" + filename + "': " + len + " puzzles");

// solve all puzzles
puzzle.forEach((p, i) => {
  let sol, res;

  [ p, sol ] = p.split(',');

  if(p.length == 81) {
    if(!(++i % 2000)) {
      console.log((i * 100 / len).toFixed(1) + '%');
    }
    if(!(res = solve(p))) {
      throw "Failed on puzzle " + i;
    }
    if(sol && res != sol) {
      throw "Invalid solution for puzzle " + i;
    }
    output += p + ',' + res + '\n';
  }
});

// results
console.timeEnd('Processing time');
fs.writeFileSync('sudoku.log', output);
console.log("MD5 = " + require('crypto').createHash('md5').update(output).digest("hex"));

// initialization of lookup tables
function init() {
  let ptr, x, y;

  for(x = 0; x < 0x200; x++) {
    N_BIT[x] = [0, 1, 2, 3, 4, 5, 6, 7, 8].reduce((s, n) => s + (x >> n & 1), 0);
    ZERO[x] = ~x & -~x;
  }

  for(x = 0; x < 9; x++) {
    BIT[1 << x] = x;
  }

  for(ptr = y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++, ptr++) {
      BLOCK[ptr] = (y / 3 | 0) * 3 + (x / 3 | 0);
      BLOCK_NDX[ptr] = (y % 3) * 3 + x % 3;
    }
  }
}

// solver
function solve(p) {
  let ptr, x, y, v,
      count = 81,
      m = Array(81).fill(-1),
      row = Array(9).fill(0),
      col = Array(9).fill(0),
      blk = Array(9).fill(0);

  // helper function to check and play a move
  function play(stack, x, y, n) {
    let p = y * 9 + x;

    if(~m[p]) {
      if(m[p] == n) {
        return true;
      }
      undo(stack);
      return false;
    }

    let msk, b;

    msk = 1 << n;
    b = BLOCK[p];

    if((col[x] | row[y] | blk[b]) & msk) {
      undo(stack);
      return false;
    }
    count--;
    col[x] ^= msk;
    row[y] ^= msk;
    blk[b] ^= msk;
    m[p] = n;
    stack.push(x << 8 | y << 4 | n);

    return true;
  }

  // helper function to undo all moves on the stack
  function undo(stack) {
    stack.forEach(v => {
      let x = v >> 8,
          y = v >> 4 & 15,
          p = y * 9 + x,
          b = BLOCK[p];

      v = 1 << (v & 15);

      count++;
      col[x] ^= v;
      row[y] ^= v;
      blk[b] ^= v;
      m[p] = -1;
    });
  }

  // convert the puzzle into our own format
  for(ptr = y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++, ptr++) {
      if(~(v = p[ptr] - 1)) {
        col[x] |= 1 << v;
        row[y] |= 1 << v;
        blk[BLOCK[ptr]] |= 1 << v;
        count--;
        m[ptr] = v;
      }
    }
  }

  // main recursive search function
  let res = (function search() {
    // success?
    if(!count) {
      return true;
    }

    let ptr, x, y, v, n, max, best,
        k, i, stack = [],
        dCol = Array(81).fill(0),
        dRow = Array(81).fill(0),
        dBlk = Array(81).fill(0),
        b, v0;

    // scan the grid:
    // - keeping track of where each digit can go on a given column, row or block
    // - looking for a cell with the fewest number of legal moves
    for(max = ptr = y = 0; y < 9; y++) {
      for(x = 0; x < 9; x++, ptr++) {
        if(m[ptr] == -1) {
          v = col[x] | row[y] | blk[BLOCK[ptr]];
          n = N_BIT[v];

          // abort if there's no legal move on this cell
          if(n == 9) {
            return false;
          }

          // update dCol[], dRow[] and dBlk[]
          for(v0 = v ^ 0x1FF; v0;) {
            b = v0 & -v0;
            dCol[x * 9 + BIT[b]] |= 1 << y;
            dRow[y * 9 + BIT[b]] |= 1 << x;
            dBlk[BLOCK[ptr] * 9 + BIT[b]] |= 1 << BLOCK_NDX[ptr];
            v0 ^= b;
          }

          // update the cell with the fewest number of moves
          if(n > max) {
            best = {
              x  : x,
              y  : y,
              ptr: ptr,
              msk: v
            };
            max = n;
          }
        }
      }
    }

    // play all forced moves (unique candidates on a given column, row or block)
    // and make sure that it doesn't lead to any inconsistency
    for(k = 0; k < 9; k++) {
      for(n = 0; n < 9; n++) {
        if(N_BIT[dCol[k * 9 + n]] == 1) {
          i = BIT[dCol[k * 9 + n]];

          if(!play(stack, k, i, n)) {
            return false;
          }
        }

        if(N_BIT[dRow[k * 9 + n]] == 1) {
          i = BIT[dRow[k * 9 + n]];

          if(!play(stack, i, k, n)) {
            return false;
          }
        }

        if(N_BIT[dBlk[k * 9 + n]] == 1) {
          i = BIT[dBlk[k * 9 + n]];

          if(!play(stack, (k % 3) * 3 + i % 3, (k / 3 | 0) * 3 + (i / 3 | 0), n)) {
            return false;
          }
        }
      }
    }

    // if we've played at least one forced move, do a recursive call right away
    if(stack.length) {
      if(search()) {
        return true;
      }
      undo(stack);
      return false;
    }

    // otherwise, try all moves on the cell with the fewest number of moves
    while((v = ZERO[best.msk]) < 0x200) {
      col[best.x] ^= v;
      row[best.y] ^= v;
      blk[BLOCK[best.ptr]] ^= v;
      m[best.ptr] = BIT[v];
      count--;

      if(search()) {
        return true;
      }

      count++;
      m[best.ptr] = -1;
      col[best.x] ^= v;
      row[best.y] ^= v;
      blk[BLOCK[best.ptr]] ^= v;

      best.msk ^= v;
    }

    return false;
  })();

  return res ? m.map(n => n + 1).join('') : false;
}

// debugging
function dump(m) {
  let x, y, c = 81, s = '';

  for(y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++) {
      s += (~m[y * 9 + x] ? (c--, m[y * 9 + x] + 1) : '-') + (x % 3 < 2 || x == 8 ? ' ' : ' | ');
    }
    s += y % 3 < 2 || y == 8 ? '\n' : '\n------+-------+------\n';
  }
  console.log(c);
  console.log(s);
}

Beispielausgabe

Getestet auf einem Intel Core i7 7500U bei 2,70 GHz.

Ausgabe

Arnauld
quelle
Möglicherweise muss ich die Wertung aufklären. Wenn Sie etwas parallel machen, ist Ihre Punktzahl immer noch die Summe aller einzelnen Lösungszeiten. Sie sollten diese Summe berechnen und als Ihre Punktzahl darstellen. Auf diese Weise geht es mehr darum, den Code so schnell wie möglich zu bekommen. Der Code kann immer über die 49151-Rätsel parallelisiert werden, was diesen Teil trivial macht. Ich kann die Bewertung auf die Gesamtzeit des Programms ändern und Multithreading nicht zulassen. Oder sollte Multithreading ein Teil der Herausforderung sein?
24.
1
@ maxb Ich verstehe. Ich habe nicht verstanden, dass Ihr Anliegen Multithreading war.
Arnauld
1
Warum ist Ihre Lösung so viel schneller als die anderen?
Anush
2
@Anush Was ich im Code als "Forced Moves" bezeichnet habe, beschleunigt den Code erheblich und ist besser als " Hidden Singles" bekannt . (Wir könnten auch nach versteckten Zwillingen, Dreiergruppen, Vierern usw. suchen, aber ich bin mir nicht sicher, ob es sich wirklich lohnt, zumindest in Node.)
Arnauld
3
" Ich fing an, nackte Singles
anzuschauen
3

Python 3 (mit dlx ) 4min 46.870s offizielle Punktzahl

(Single Core i7-3610QM hier)

Natürlich mit einer kompilierten Sprache wie C zu schlagen und Threading zu verwenden, aber es ist ein Anfang ...

sudokuist ein Modul, das ich auf Github platziert habe (kopiert in der Fußzeile dieses Beitrags) und das dlxunter der Haube verwendet wird.

#!/usr/bin/python
import argparse
import gc
import sys
from timeit import timeit

from sudoku import Solver

def getSolvers(filePath):
    solvers = []
    with open(filePath, 'r') as inFile:
        for line in inFile:
            content = line.rstrip()
            if len(content) == 81 and content.isdigit():
                solvers.append(Solver(content))
    return solvers

def solve(solvers):
    for solver in solvers:
        yield next(solver.genSolutions())

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Time or print solving of some sudoku.')
    parser.add_argument('filePath',
                        help='Path to the file containing proper sudoku on their own lines as 81 digits in row-major order with 0s as blanks')
    parser.add_argument('-p', '--print', dest='printEm', action='store_true',
                        default=False,
                        help='print solutions in the same fashion as the input')
    parser.add_argument('-P', '--pretty', dest='prettyPrintEm', action='store_true',
                        default=False,
                        help='print inputs and solutions formatted for human consumption')
    args = parser.parse_args()

    if args.printEm or args.prettyPrintEm:
        solvers = getSolvers(args.filePath)
        print(len(solvers))
        for solver, solution in zip(solvers, solve(solvers)):
            if args.prettyPrintEm:
                print(solver)
                print(solution)
            else:
                print('{},{}'.format(solver.representation(noneCharacter='0'), solution.representation()))
    else:
        setup = '''\
from __main__ import getSolvers, solve, args, gc
gc.disable()
solvers = getSolvers(args.filePath)'''
        print(timeit("for solution in solve(solvers): pass", setup=setup, number=1))

Verwendung

  • Installieren Sie Python 3
  • Speichere sudoku.pyirgendwo auf deinem Pfad (über den Git Hub Link oder kopiere ihn von unten)
  • Speichern Sie den obigen Code testSolver.pyirgendwo auf Ihrem Pfad
  • Installieren Sie dlx:
python -m pip installiere dlx
  • Führe es aus (übrigens verbraucht es Speicher, als wäre es aus der Mode gekommen)
Verwendung: testSolver.py [-h] [-p] [-P] filePath

Zeit- oder Druckauflösung von Sudoku.

Positionsargumente:
  filePath Pfad zu der Datei, die das richtige Sudoku in eigenen Zeilen enthält
                als 81 Ziffern in der Reihenfolge der Zeilen mit 0 als Leerzeichen

optionale Argumente:
  -h, --help Diese Hilfemeldung anzeigen und beenden
  -p, --print Drucklösungen auf die gleiche Weise wie die Eingabe
  -P, --Hübsche Druckeingaben und für den menschlichen Verzehr formatierte Lösungen

Pipe-Ausgabe wie in der Abfragespezifikation erforderlich in eine Datei, falls erforderlich:

python testSolver.py -p Eingabedateipfad> Ausgabedateipfad

sudoku.py (ja, hier gibt es außer dem Lösen noch weitere Funktionen)

import dlx
from itertools import permutations, takewhile
from random import choice, shuffle

'''
A 9 by 9 sudoku solver.
'''
_N = 3
_NSQ = _N**2
_NQU = _N**4
_VALID_VALUE_INTS = list(range(1, _NSQ + 1))
_VALID_VALUE_STRS = [str(v) for v in _VALID_VALUE_INTS]
_EMPTY_CELL_CHAR = '·'

# The following are mutually related by their ordering, and define ordering throughout the rest of the code. Here be dragons.
#
_CANDIDATES = [(r, c, v) for r in range(_NSQ) for c in range(_NSQ) for v in range(1, _NSQ + 1)]
_CONSTRAINT_INDEXES_FROM_CANDIDATE = lambda r, c, v: [ _NSQ * r + c, _NQU + _NSQ * r + v - 1, _NQU * 2 + _NSQ * c + v - 1, _NQU * 3 + _NSQ * (_N * (r // _N) + c // _N) + v - 1]
_CONSTRAINT_FORMATTERS =                             [ "R{0}C{1}"  , "R{0}#{1}"                , "C{0}#{1}"                   , "B{0}#{1}"]
_CONSTRAINT_NAMES = [(s.format(a, b + (e and 1)), dlx.DLX.PRIMARY) for e, s in enumerate(_CONSTRAINT_FORMATTERS) for a in range(_NSQ) for b in range(_NSQ)]
_EMPTY_GRID_CONSTRAINT_INDEXES = [_CONSTRAINT_INDEXES_FROM_CANDIDATE(r, c, v) for (r, c, v) in _CANDIDATES]
#
# The above are mutually related by their ordering, and define ordering throughout the rest of the code. Here be dragons.


class Solver:
    def __init__(self, representation=''):
        if not representation or len(representation) != _NQU:
            self._complete = False
            self._NClues = 0
            self._repr = [None]*_NQU # blank grid, no clues - maybe to extend to a generator by overriding the DLX column selection to be stochastic.
        else:
            nClues = 0
            repr = []
            for value in representation:
                if not value:
                    repr.append(None)
                elif isinstance(value, int) and 1 <= value <= _NSQ:
                    nClues += 1
                    repr.append(value)
                elif value in _VALID_VALUE_STRS:
                    nClues += 1
                    repr.append(int(value))
                else:
                    repr.append(None)
            self._complete = nClues == _NQU
            self._NClues = nClues
            self._repr = repr

    def genSolutions(self, genSudoku=True, genNone=False, dlxColumnSelctor=None):
        '''
        if genSudoku=False, generates each solution as a list of cell values (left-right, top-bottom)
        '''
        if self._complete:
            yield self
        else:
            self._initDlx()
            dlxColumnSelctor = dlxColumnSelctor or dlx.DLX.smallestColumnSelector
            if genSudoku:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield Solver([v for (r, c, v) in sorted([self._dlx.N[i] for i in solution])])
            elif genNone:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield
            else:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield [v for (r, c, v) in sorted([self._dlx.N[i] for i in solution])]

    def uniqueness(self, returnSolutionIfProper=False):
        '''
        Returns: 0 if unsolvable;
                 1 (or the unique solution if returnSolutionIfProper=True) if uniquely solvable; or
                 2 if multiple possible solutions exist
        - a 'proper' sudoku is uniquely solvable.
        '''
        slns = list(takewhile(lambda t: t[0] < 2, ((i, sln) for i, sln in enumerate(self.genSolutions(genSudoku=returnSolutionIfProper, genNone=not returnSolutionIfProper)))))
        uniqueness = len(slns)
        if returnSolutionIfProper and uniqueness == 1:
            return slns[0][1]
        else:
            return uniqueness

    def representation(self, asString=True, noneCharacter='.'):
        if asString:
            return ''.join([v and str(_VALID_VALUE_STRS[v - 1]) or noneCharacter for v in self._repr])
        return self._repr[:]

    def __repr__(self):
        return display(self._repr)

    def _initDlx(self):
        self._dlx = dlx.DLX(_CONSTRAINT_NAMES)
        rowIndexes = self._dlx.appendRows(_EMPTY_GRID_CONSTRAINT_INDEXES, _CANDIDATES)
        for r in range(_NSQ):
            for c in range(_NSQ):
                v = self._repr[_NSQ * r + c]
                if v is not None:
                    self._dlx.useRow(rowIndexes[_NQU * r + _NSQ * c + v - 1])


_ROW_SEPARATOR_COMPACT = '+'.join(['-' * (2 * _N + 1) for b in range(_N)])[1:-1] + '\n'
_ROW_SEPARATOR = ' ·-' + _ROW_SEPARATOR_COMPACT[:-1] + '-·\n'
_TOP_AND_BOTTOM = _ROW_SEPARATOR.replace('+', '·')

_ROW_LABELS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J']
_COL_LABELS = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
_COLS_LABEL = ' ' + ' '.join([i % _N == 0 and '  ' + l or l for i, l in enumerate(_COL_LABELS)]) + '\n'


def display(representation, conversion=None, labelled=True):
    result = ''
    raw = [conversion[n or 0] for n in representation] if conversion else representation
    if labelled:
        result += _COLS_LABEL + _TOP_AND_BOTTOM
        rSep = _ROW_SEPARATOR
    else:
        rSep = _ROW_SEPARATOR_COMPACT
    for r in range(_NSQ):
        if r > 0 and r % _N == 0:
            result += rSep
        for c in range(_NSQ):
            if c % _N == 0:
                if c == 0:
                    if labelled:
                        result += _ROW_LABELS[r] + '| '
                else:
                    result += '| '
            result += str(raw[_NSQ * r + c] or _EMPTY_CELL_CHAR) + ' '
        if labelled:
            result += '|'
        result += '\n'
    if labelled:
        result += _TOP_AND_BOTTOM
    else:
        result = result[:-1]
    return result

def permute(representation):
    '''
    returns a random representation from the given representation's equivalence class
    '''
    rows = [list(representation[i:i+_NSQ]) for i in range(0, _NQU, _NSQ)]
    rows = permuteRowsAndBands(rows)
    rows = [[r[i] for r in rows] for i in range(_NSQ)]
    rows = permuteRowsAndBands(rows)
    pNumbers = [str(i) for i in range(1, _NSQ + 1)]
    shuffle(pNumbers)
    return ''.join(''.join([pNumbers[int(v) - 1] if v.isdigit() and v != '0' else v for v in r]) for r in rows)

def permuteRowsAndBands(rows):
    bandP = choice([x for x in permutations(range(_N))])
    rows = [rows[_N * b + r] for b in bandP for r in range(_N)]
    for band in range(0, _NSQ, _N):
        rowP = choice([x for x in permutations([band + i for i in range(_N)])])
        rows = [rows[rowP[i % _N]] if i // _N == band else rows[i] for i in range(_NSQ)]
    return rows


def getRandomSolvedStateRepresentation():
    return permute('126459783453786129789123456897231564231564897564897231312645978645978312978312645')


def getRandomSudoku():
    r = getRandomSolvedStateRepresentation()
    s = Solver(r)
    indices = list(range(len(r)))
    shuffle(indices)
    for i in indices:
        ns = Solver(s._repr[:i] + [None] + s._repr[i+1:])
        if ns.uniqueness() == 1:
            s = ns
    return s


if __name__ == '__main__':
    print('Some example useage:')
    inputRepresentation = '..3......4......2..8.12...6.........2...6...7...8.7.31.1.64.9..6.5..8...9.83...4.'
    print('>>> s = Solver({})'.format(inputRepresentation))
    s = Solver(inputRepresentation)
    print('>>> s')
    print(s)
    print('>>> print(s.representation())')
    print(s.representation())
    print('>>> print(display(s.representation(), labelled=False))')
    print(display(s.representation(), labelled=False))
    print('>>> for solution in s.genSolutions(): solution')
    for solution in s.genSolutions(): print(solution)
    inputRepresentation2 = inputRepresentation[:2] + '.' + inputRepresentation[3:]
    print('>>> s.uniqueness()')
    print(s.uniqueness())
    print('>>> s2 = Solver({})  # removed a clue; this has six solutions rather than one'.format(inputRepresentation2))
    s2 = Solver(inputRepresentation2)
    print('>>> s2.uniqueness()')
    print(s2.uniqueness())
    print('>>> for solution in s2.genSolutions(): solution')
    for solution in s2.genSolutions(): print(solution)
    print('>>> s3 = getRandomSudoku()')
    s3 = getRandomSudoku()
    print('>>> s3')
    print(s3)
    print('>>> for solution in s3.genSolutions(): solution')
    for solution in s3.genSolutions(): print(solution)
Jonathan Allan
quelle
Ich bin beeindruckend für eine Python-Lösung und versuche sie später noch einmal zu vergleichen.
24.
1
Vielen Dank; und wow, so viel schneller gibt es maxb!
Jonathan Allan
1
+1 für die Verwendung von tanzenden Links
Anush
3

Python 3 + Z3 - 10min 45.657s offizielles Ergebnis

ungefähr 1000s auf meinem Laptop.

import time
start = time.time()

import z3.z3 as z3
import itertools
import datetime
import sys

solver = z3.Solver()
ceils = [[None] * 9 for i in range(9)]

for row in range(9):
    for col in range(9):
        name = 'c' + str(row * 9 + col)
        ceil = z3.BitVec(name, 9)
        solver.add(z3.Or(
            ceil == 0b000000001,
            ceil == 0b000000010,
            ceil == 0b000000100,
            ceil == 0b000001000,
            ceil == 0b000010000,
            ceil == 0b000100000,
            ceil == 0b001000000,
            ceil == 0b010000000,
            ceil == 0b100000000
        ))
        solver.add(ceil != 0)
        ceils[row][col] = ceil
for i in range(9):
    for j in range(9):
        for k in range(9):
            if j == k: continue
            solver.add(ceils[i][j] & ceils[i][k] == 0)
            solver.add(ceils[j][i] & ceils[k][i] == 0)
            row, col = i // 3 * 3, i % 3 * 3
            solver.add(ceils[row + j // 3][col + j % 3] & ceils[row + k // 3][col + k % 3] == 0)

row_col = list(itertools.product(range(9), range(9)))
lookup = { 1 << i: str(i + 1) for i in range(9) }

def solve(line):
    global solver, output, row_col, ceils, lookup
    solver.push()
    for value, (row, col) in zip(line, row_col):
        val = ord(value) - 48
        if val == 0: continue
        solver.add(ceils[row][col] == 1 << (val - 1))

    output = []
    if solver.check() == z3.sat:
        model = solver.model()
        for row in range(9):
            for col in range(9):
                val = model[ceils[row][col]].as_long()
                output.append(lookup[val])
    solver.pop()

    return ''.join(output)

count = int(input())
print(count)
for i in range(count):
    if i % 1000 == 0:
        sys.stderr.write(str(i) + '\n')
    line = input()
    print(line + "," + solve(line))
end = time.time()

sys.stderr.write(str(end - start))

Installieren Sie die Abhängigkeit

pip install z3-solver

Lauf

python3 solve.py <in.txt> out.txt

Ich bin mir nicht sicher, wie ich seine Leistung verbessern soll, da es einfach magisch gelöst wurde ...

tsh
quelle
Sehr beeindruckend für einen allgemeinen Constraint-Löser. Meine erste Implementierung war viel langsamer. Wenn ich gerade einen Benchmark durchführe, aktualisiere ich den Beitrag, sobald er fertig ist.
Maxb
@maxb hat gerade einige allgemeine Aufräumarbeiten durchgeführt, und ich glaube, es ist nicht nötig, den Benchmark zu aktualisieren ...
tsh
3

C - 2.228s 1.690s offizielle Punktzahl

basierend auf @ Arnauld's

#include<fcntl.h>
#define O const
#define R return
#define S static
#define  $(x,y...)if(x){y;}
#define  W(x,y...)while(x){y;}
#define fi(x,y...)for(I i=0,_n=(x);i<_n;i++){y;}
#define fj(x,y...)for(I j=0,_n=(x);j<_n;j++){y;}
#define fp81(x...)for(I p=0;p<81;p++){x;}
#define  fq3(x...)for(I q=0;q<3;q++){x;}
#define fij9(x...){fi(9,fj(9,x))}
#define m0(x)m0_((V*)(x),sizeof(x));
#define popc(x)__builtin_popcount(x)
#define ctz(x)__builtin_ctz(x)
#include<sys/syscall.h>
#define sc(f,x...)({L u;asm volatile("syscall":"=a"(u):"0"(SYS_##f)x:"cc","rcx","r11","memory");u;})
#define sc1(f,x)    sc(f,,"D"(x))
#define sc2(f,x,y)  sc(f,,"D"(x),"S"(y))
#define sc3(f,x,y,z)sc(f,,"D"(x),"S"(y),"d"(z))
#define wr(a...)sc3(write,a)
#define op(a...)sc3( open,a)
#define cl(a...)sc1(close,a)
#define fs(a...)sc2(fstat,a)
#define ex(a...)sc1( exit,a)
#define mm(x,y,z,t,u,v)({register L r10 asm("r10")=t,r8 asm("r8")=u,r9 asm("r9")=v;\
                         (V*)sc(mmap,,"D"(x),"S"(y),"d"(z),"r"(r10),"r"(r8),"r"(r9));})
typedef void V;typedef char C;typedef short H;typedef int I;typedef long long L;
S C BL[81],KL[81],IJK[81][3],m[81],t_[81-17],*t;S H rcb[3][9],cnt;
S V*mc(V*x,O V*y,L n){C*p=x;O C*q=y;fi(n,*p++=*q++)R x;}S V m0_(C*p,L n){fi(n,*p++=0);}
S I undo(C*t0){cnt+=t-t0;W(t>t0,C p=*--t;H v=1<<m[p];fq3(rcb[q][IJK[p][q]]^=v)m[p]=-1)R 0;}
S I play(C p,H v){$(m[p]>=0,R 1<<m[p]==v)I w=0;fq3(w|=rcb[q][IJK[p][q]])$(w&v,R 0)cnt--;
                  fq3(rcb[q][IJK[p][q]]^=v);m[p]=ctz(v);*t++=p;R 1;}
S I f(){$(!cnt,R 1)C*t0=t;H max=0,bp,bv,d[9][9][4];m0(d);
 fij9(I p=i*9+j;$(m[p]<0,
  I v=0;fq3(v|=rcb[q][IJK[p][q]])I w=v^511;$(!w,R 0)H g[]={1<<j,1<<i,1<<BL[p]};
  do{I z=ctz(w);w&=w-1;fq3(d[IJK[p][q]][z][q]|=g[q]);}while(w);
  I n=popc(v);$(max<n,max=n;bp=p;bv=v)))
 fij9(I u=d[i][j][0];$(popc(u)==1,I l=ctz(u);$(!play(   i*9+l ,1<<j),R undo(t0)))
        u=d[i][j][1];$(popc(u)==1,I l=ctz(u);$(!play(   l*9+i ,1<<j),R undo(t0)))
        u=d[i][j][2];$(popc(u)==1,I l=ctz(u);$(!play(KL[i*9+l],1<<j),R undo(t0))))
 $(t-t0,R f()||undo(t0))
 W(1,I v=1<<ctz(~bv);$(v>511,R 0)fq3(rcb[q][IJK[bp][q]]^=v)m[bp]=ctz(v);cnt--;$(f(),R 1)
     cnt++;m[bp]=-1;fq3(rcb[q][IJK[bp][q]]^=v)bv^=v)
 R 0;}
asm(".globl _start\n_start:pop %rdi\nmov %rsp,%rsi\njmp main");
V main(I ac,C**av){$(ac!=2,ex(2))
 fij9(I p=i*9+j;BL[p]=i%3*3+j%3;KL[p]=(i/3*3+j/3)*9+BL[p];IJK[p][0]=i;IJK[p][1]=j;IJK[p][2]=i/3*3+j/3)
 I d=op(av[1],0,0);struct stat h;fs(d,&h);C*s0=mm(0,h.st_size,1,0x8002,d,0),*s=s0;cl(d); //in
 C*r0=mm(0,2*h.st_size,3,0x22,-1,0),*r=r0; //out
 I n=0;W(*s!='\n',n*=10;n+=*s++-'0')s++;mc(r,s0,s-s0);r+=s-s0;
 fi(n,m0(rcb);cnt=81;t=t_;$(s[81]&&s[81]!='\n',ex(3))mc(r,s,81);r+=81;*r++=',';
      fp81(I v=m[p]=*s++-'1';$(v>=0,v=1<<v;fq3(rcb[q][IJK[p][q]]|=v)cnt--))
      s++;$(!f(),ex(4))fp81(r[p]=m[p]+'1')r+=81;*r++='\n')
 wr(1,r0,r-r0);ex(0);}

kompilieren und ausführen:

gcc -O3 -march=native -nostdlib -ffreestanding
time ./a.out all_17_clue_sudokus.txt | md5sum
ngn
quelle
Herzlichen Glückwunsch, Sie (und Arnauld) führen gerade viel an.
Maxb
@maxb Ich habe versucht, effizientere Ein- / Ausgabe (direkte Systemaufrufe ohne libc) zu verwenden, aber der Effekt war nicht so gut, wie ich es mir erhofft hatte. Ich habe auch den Rest des Codes aufgeräumt. dies sollte ~ 0.2s dauern. Macht es Ihnen etwas aus, erneut zu punkten?
27.
Natürlich werde ich versuchen, es irgendwann heute
fertig zu machen
Ich habe auch darüber nachgedacht, eine RAM-Disk für alle E / A-Vorgänge zu testen, nur um festzustellen, ob dies einen Unterschied macht. Ich bezweifle, dass es einen großen Unterschied machen wird, da Lese- und Schreibvorgänge sequentiell ablaufen und meine SSD einen Cache hat, der groß genug ist, um alles unterzubringen.
28.
@maxb es wird wohl überhaupt keinen unterschied geben. Wenn Sie das Programm zum zweiten Mal ausführen, befindet sich die Eingabedatei ohnehin bereits im RAM - im Dateisystem-Cache von Linux.
28.
2

C - 12min 28.374s offizielles Ergebnis

läuft für ca. 30m 15m auf meinem i5-7200U und erzeugt den richtigen md5 Hash

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/time.h>
#define B break
#define O const
#define P printf
#define R return
#define S static
#define $(x,y...)  if(x){y;}
#define E(x...)    else{x;}
#define W(x,y...)  while(x){y;}
#define fi(x,y...) for(I i=0,_n=(x);i<_n;i++){y;}
#define fj(x,y...) for(I j=0,_n=(x);j<_n;j++){y;}
typedef void V;typedef char C;typedef short H;typedef int I;typedef long long L;
S C h[81][20]; //h[i][0],h[i][1],..,h[i][19] are the squares that clash with square i
S H a[81]      //a[i]: bitmask of possible choices; initially one of 1<<0, 1<<1 .. 1<<8, or 511 (i.e. nine bits set)
   ,b[81];     //b[i]: negated bitmask of impossible chioces; once we know square i has value v, b[i] becomes ~(1<<v)
S I f(){ //f:recursive solver
 I p=-1; //keep track of the popcount (number of 1 bits) in a
 W(1,I q=0;                                         //simple non-recursive deductions:
     fi(81,fj(20,a[i]&=b[h[i][j]])                  // a[i] must not share bits with its clashing squares
           $(!(a[i]&a[i]-1),$(!a[i],R 0)b[i]=~a[i]) // if a[i] has one bit left, update b[i].  if a[i]=0, we have a contradiction
           q+=__builtin_popcount(a[i]))             // compute new popcount
     $(p==q,B)p=q;)                                 // if the popcount of a[] changed, try to do more deductions
 I k=-1,mc=10;fi(81,$(b[i]==-1,I c=__builtin_popcount(a[i]);$(c<mc,k=i;mc=c;$(c==2,B)))) //find square with fewest options left
 $(k==-1,R 1) //if there isn't any such, we're done - success! otherwise k is that square
 fi(9,$(a[k]&1<<i,H a0[81],b0[81];                                        //try different values for square k
                  memcpy(a0,a,81*sizeof(*a));memcpy(b0,b,81*sizeof(*b));  // save a and b
                  a[k]=1<<i;b[k]=~a[k];$(f(),R 1)                         // set square k and make a recursive call
                  memcpy(a,a0,81*sizeof(*a));memcpy(b,b0,81*sizeof(*b)))) // restore a and b
 R 0;}
S L tm(){struct timeval t;gettimeofday(&t,0);R t.tv_sec*1000000+t.tv_usec;} //current time in microseconds
I main(){L t=0;I n;scanf("%d",&n);P("%d\n",n);
 fi(81,L l=0;fj(81,$(i!=j&&(i%9==j%9||i/9==j/9||(i/27==j/27&&i%9/3==j%9/3)),h[i][l++]=j))) //precompute h
 fi(n,S C s[82];scanf("%s",s);printf("%s,",s);                        //i/o and loop over puzzles
      fj(81,a[j]=s[j]=='0'?511:1<<(s[j]-'1');b[j]=s[j]=='0'?-1:~a[j]) //represent '1' .. '9' as 1<<0 .. 1<<8, and 0 as 511
      t-=tm();I r=f();t+=tm();                                        //measure time only for the solving function
      $(!r,P("can't solve\n");exit(1))                                //shouldn't happen
      fj(81,s[j]=a[j]&a[j]-1?'0':'1'+__builtin_ctz(a[j]))             //1<<0 .. 1<<8 to '1' .. '9'
      P("%s\n",s))                                                    //output
 fflush(stdout);dprintf(2,"time:%lld microseconds\n",t);R 0;}         //print self-measured time to stderr so it doesn't affect stdout's md5

kompiliere (vorzugsweise mit clang v6) und führe aus:

clang -O3 -march=native a.c
time ./a.out <all_17_clue_sudokus.txt | tee o.txt | nl
md5sum o.txt
ngn
quelle
3
Warum so hässlich? Das ist kein Code-Golf!
Jonathan Allan
3
@ JonathanAllan das ist, wie ich in der Regel Code (es sei denn, ich bin in einem Team, die es vorziehen, etwas anderes zu tun). Es ist wunderschön :)
ngn
1
Haha, "schön" und leicht in 6 Monaten wieder zu finden: p
Jonathan Allan
1
ja eigentlich. Ich mache das seit ein paar Jahren und finde es effizienter. in der apl welt ist es als incunabulum style bekannt. Mit aufgeblähtem Code bewegen Sie Ihre Augen meist vertikal (unnatürlich und für unsere Landschaftsmonitore ungeeignet) und scrollen viel. Mit einem engen Code können Sie alles auf einmal sehen, so dass es einfacher ist, sich darin zurechtzufinden und die Komplexität auf einen Blick zu beurteilen.
23.
Ist es eine Backtracking-Lösung? Ich sehe dort zwei memcpyund einige Rekursionen. Ich werde heute versuchen, es zu überprüfen.
24.
2

Java - 4.056s offizielles Ergebnis

Die Hauptidee dabei ist, niemals Speicher zuzuweisen, wenn er nicht benötigt wird. Die einzige Ausnahme sind Primitive, die vom Compiler ohnehin optimiert werden sollten. Alles andere wird in Form von Masken und Anordnungen von Vorgängen gespeichert, die in jedem Schritt ausgeführt werden. Dies kann rückgängig gemacht werden, wenn der Rekursionsschritt abgeschlossen ist.

Etwa die Hälfte aller Sudokus werden vollständig ohne Zurückverfolgung gelöst, aber wenn ich diese Zahl höher lege, scheint die Gesamtzeit langsamer zu sein. Ich plane, dies in C ++ umzuschreiben und noch weiter zu optimieren, aber dieser Solver wird zu einem Giganten.

Ich wollte so viel Caching wie möglich implementieren, was zu einigen Problemen führte. Wenn sich zum Beispiel zwei Zellen in derselben Zeile befinden, die nur die Nummer 6 haben können, haben wir einen unmöglichen Fall erreicht und sollten zum Backtracking zurückkehren. Da ich jedoch alle Optionen in einem Durchlauf berechnet und dann Zahlen in Zellen mit nur einer Möglichkeit platziert habe, habe ich nicht doppelt überprüft, ob ich eine Zahl in derselben Zeile direkt zuvor platziert hatte. Dies führte zu unmöglichen Lösungen.

Da alles in den oben definierten Arrays enthalten ist, beläuft sich die Speichernutzung des eigentlichen Solvers auf etwa 216 KB. Der Hauptteil der Speichernutzung stammt aus dem Array, das alle Rätsel enthält, und den E / A-Handlern in Java.

BEARBEITEN : Ich habe eine Version, die jetzt in C ++ übersetzt ist, aber nicht viel schneller. Die offizielle Zeit beträgt ungefähr 3,5 Sekunden, was keine große Verbesserung darstellt. Ich denke, das Hauptproblem bei meiner Implementierung ist, dass ich meine Masken eher als Arrays als als Bitmasken behalte. Ich werde versuchen, Arnauld's Lösung zu analysieren, um herauszufinden, was getan werden kann, um sie zu verbessern.

import java.util.HashMap;
import java.util.ArrayList;
import java.util.Arrays;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.File;
import java.io.PrintWriter;

public class Sudoku {   

    final private int[] unsolvedBoard;
    final private int[] solvedBoard; 
    final private int[][] neighbors;
    final private int[][] cells;

    private static int[] clues;
    final private int[][] mask;
    final private int[] formattedMask;
    final private int[][] placedMask;
    final private boolean[][][] lineMask;
    final private int[] lineCounters;
    final private int[][] sectionCounters;
    final private int[][] sectionMask;

    private int easySolved;
    private boolean isEasy;
    private int totEasy;
    private int placedNumbers;
    public long totTime = 0;
    private boolean solutionFound;
    public long lastPrint;
    private boolean shouldPrint;
    private boolean isImpossible = false;

    public Sudoku() {
        mask = new int[81][9];
        formattedMask = new int[81];
        placedMask = new int[64][64];
        lineMask = new boolean[64][81][9];
        sectionCounters = new int[9][27];
        sectionMask = new int[9][27];
        lineCounters = new int[64];
        neighbors = new int[81][20];
        unsolvedBoard = new int[81];
        solvedBoard = new int[81];
        cells = new int[][] {{0 ,1 ,2 ,9 ,10,11,18,19,20},
                             {3 ,4 ,5 ,12,13,14,21,22,23},
                             {6 ,7 ,8 ,15,16,17,24,25,26},
                             {27,28,29,36,37,38,45,46,47},
                             {30,31,32,39,40,41,48,49,50},
                             {33,34,35,42,43,44,51,52,53},
                             {54,55,56,63,64,65,72,73,74},
                             {57,58,59,66,67,68,75,76,77},
                             {60,61,62,69,70,71,78,79,80}};
    }

    final public long solveSudoku(int[] board, int clue) {

        long t1 = 0,t2 = 0;
        t1 = System.nanoTime();
        System.arraycopy(board, 0, unsolvedBoard, 0, 81);
        System.arraycopy(board, 0, solvedBoard, 0, 81);

        placedNumbers = 0;
        solutionFound = false;
        isEasy = true;
        isImpossible = false;

        for (int[] i : mask) {
            Arrays.fill(i, 0);
        }

        for (boolean[][] i : lineMask) {
            for (boolean[] j : i) {
                Arrays.fill(j, false);
            }
        }

        for (int i = 0; i < 81; i++) {
            if (solvedBoard[i] != -1) {
                put(i, solvedBoard[i]);
                placedNumbers++;
            }
        }

        solve(0, 0);
        t2 = System.nanoTime();
        easySolved += isEasy ? 1 : 0;

        if (solutionFound && placedNumbers == 81) {
            totTime += t2-t1;
            if (shouldPrint || t2-t1 > 5*1_000_000_000L) {
                System.out.print(String.format(
                    "Solution from %2d clues found in %7s", 
                    clue, 
                    printTime(t1, t2)
                ));
                shouldPrint = false;
                if (t2-t1 > 1*1000_000_000L) {
                    System.out.println();
                    display2(board, solvedBoard);
                }
            }
        } else {
            System.out.println("No solution");
            display2(unsolvedBoard, solvedBoard);
            return -1;
        }
        return t2 - t1;
    }

    final private void solve(int v, int vIndex) {

        lineCounters[vIndex] = 0;
        int easyIndex = placeEasy(vIndex);

        if (isImpossible) {
            resetEasy(vIndex, easyIndex);
            resetLineMask(vIndex);
            return;
        }

        if (placedNumbers == 81) {
            solutionFound = true;
            return;
        }
        // if (true) {
            // return;
        // }

        // either get the next empty cell
        // while (v < 81 && solvedBoard[v] >= 0) {
            // v++;
        // }
        // or get the cell with the fewest options
        generateFormattedMasks();
        int minOptions = 9;
        for (int i = 0; i < 81; i++) {
            int options = formattedMask[i] & 0xffff;
            if (options > 0 && options < minOptions) {
                minOptions = options;
                v = i;
            }
            if (options == 0 && solvedBoard[i] == -1) {
                isImpossible = true;
            }
        }
        if (!isImpossible) {
            for (int c = 0; c < 9; c++) {
                if (isPossible(v, c)) {
                    isEasy = false;
                    put(v, c);
                    placedNumbers++;
                    solve(v + 1, vIndex + 1); 
                    if (solutionFound) {
                        return;
                    }
                    unput(v, c);
                    placedNumbers--;
                }
            }
        }
        resetEasy(vIndex, easyIndex);
        resetLineMask(vIndex);
    }

    final private void resetEasy(int vIndex, int easyIndex) {
        for (int i = 0; i < easyIndex; i++) {
            int tempv2 = placedMask[vIndex][i];
            int c2 = solvedBoard[tempv2];
            unput(tempv2, c2);
            placedNumbers--;
        }
    }

    final private void resetLineMask(int vIndex) {
        if (lineCounters[vIndex] > 0) {
            for (int i = 0; i < 81; i++) {
                for (int c = 0; c < 9; c++) {
                    if (lineMask[vIndex][i][c]) {
                        enable(i, c);
                        lineMask[vIndex][i][c] = false;
                    }
                }
            }
        }       
        isImpossible = false;
    }

    final private int placeEasy(int vIndex) {
        int easyIndex = 0;
        int lastPlaced = 0, tempPlaced = 0, easyplaced = 0;
        int iter = 0;
        while (placedNumbers > lastPlaced+1) {
            lastPlaced = placedNumbers;
            tempPlaced = 0;
            while (placedNumbers > tempPlaced + 5) {
                tempPlaced = placedNumbers;
                easyIndex = placeNakedSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            tempPlaced = 0;
            while (placedNumbers < 55*1 && placedNumbers > tempPlaced + 2) {
                tempPlaced = placedNumbers;
                easyIndex = placeHiddenSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            tempPlaced = 0;
            while (placedNumbers < 65*1 && placedNumbers > tempPlaced + 1) {
                tempPlaced = placedNumbers;
                easyIndex = placeNakedSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            if (iter < 2 && placedNumbers < 55*1) {
                checkNakedTriples(vIndex);
            }
            if (placedNumbers < 45*1) {
                checkNakedDoubles(vIndex);
                identifyLines(vIndex);
            }
            iter++;
        }
        return easyIndex;
    }

    final private int placeNakedSingles(int vIndex, int easyIndex) {
        generateFormattedMasks();
        for (int tempv = 0; tempv < 81; tempv++) {
            int possibilities = formattedMask[tempv];
            if ((possibilities & 0xffff) == 1) {
                possibilities >>= 16;
                int c = 0;
                while ((possibilities & 1) == 0) {
                    possibilities >>= 1;
                    c++;
                }
                if (isPossible(tempv, c)) {
                    put(tempv, c);
                    placedMask[vIndex][easyIndex++] = tempv;
                    placedNumbers++;
                } else {
                    isImpossible = true;
                    return easyIndex;
                }
            } else if (possibilities == 0 && solvedBoard[tempv] == -1) {
                isImpossible = true;
                return easyIndex;
            }
        }
        return easyIndex;
    }


    final private int placeHiddenSingles(int vIndex, int easyIndex) {
        for (int[] i : sectionCounters) {
            Arrays.fill(i, 0);
        }

        for (int c = 0; c < 9; c++) {
            for (int v = 0; v < 81; v++) {
                if (isPossible(v, c)) {
                    int cell = 3 * (v / 27) + ((v / 3) % 3);
                    sectionCounters[c][v / 9]++;
                    sectionCounters[c][9 + (v % 9)]++;
                    sectionCounters[c][18 + cell]++;
                    sectionMask[c][v / 9] = v;
                    sectionMask[c][9 + (v % 9)] = v;
                    sectionMask[c][18 + cell] = v;
                }
            }

            int v;

            for (int i = 0; i < 9; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        placedNumbers++;
                        int cell = 3 * (v / 27) + ((v / 3) % 3);
                        sectionCounters[c][9 + (v%9)] = 9;
                        sectionCounters[c][18 + cell] = 9;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }

            for (int i = 9; i < 18; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        int cell = 3 * (v / 27) + ((v / 3) % 3);
                        placedNumbers++;
                        sectionCounters[c][18 + cell]++;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }


            for (int i = 18; i < 27; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        placedNumbers++;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }

        }
        return easyIndex;
    }

    final private int getFormattedMask(int v) {
        if (solvedBoard[v] >= 0) {
            return 0;
        }
        int x = 0;
        int y = 0;
        for (int c = 8; c >= 0; c--) {
            x <<= 1;
            x += mask[v][c] == 0 ? 1 : 0;
            y += mask[v][c] == 0 ? 1 : 0;
        }
        x <<= 16;
        return x + y;
    }

    final private int getCachedMask(int v) {
        return formattedMask[v];
    }

    final private void generateFormattedMasks() {
        for (int i = 0; i < 81; i++) {
            formattedMask[i] = getFormattedMask(i);
        }
    }

    final private void generateFormattedMasks(int[] idxs) {
        for (int i : idxs) {
            formattedMask[i] = getFormattedMask(i);
        }
    }


    final private void checkNakedDoubles(int vIndex) {
        generateFormattedMasks();
        for (int i = 0; i < 81; i++) {
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 2) {
                for (int j = i+1; j < (i/9+1)*9; j++) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask == bitmask_j) {
                        bitmask >>= 16;
                        int c0, c1, k = 0;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c0 = k;
                        bitmask >>= 1;
                        k++;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c1 = k;
                        for (int cell = (i/9)*9; cell < (i/9+1)*9; cell++) {
                            if (cell != i && cell != j) {
                                if (!lineMask[vIndex][cell][c0]) {
                                    disable(cell, c0);
                                    lineMask[vIndex][cell][c0] = true;
                                    lineCounters[vIndex]++;
                                }
                                if (!lineMask[vIndex][cell][c1]) {
                                    disable(cell, c1);
                                    lineMask[vIndex][cell][c1] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 81; idx++) {
            int i = (idx%9)*9 + idx/9;
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 2) {
                for (int j = i+9; j < 81; j += 9) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask == bitmask_j) {
                        bitmask >>= 16;
                        int c0, c1, k = 0;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c0 = k;
                        bitmask >>= 1;
                        k++;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c1 = k;
                        for (int cell = i % 9; cell < 81; cell += 9) {
                            if (cell != i && cell != j) {
                                if (!lineMask[vIndex][cell][c0]) {
                                    disable(cell, c0);
                                    lineMask[vIndex][cell][c0] = true;
                                    lineCounters[vIndex]++;
                                }
                                if (!lineMask[vIndex][cell][c1]) {
                                    disable(cell, c1);
                                    lineMask[vIndex][cell][c1] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 9; idx++) {
            for (int i = 0; i < 9; i++) {
                int bitmask = formattedMask[cells[idx][i]];
                if ((bitmask & 0xffff) == 2) {
                    for (int j = i+1; j < 9; j++) {
                        int bitmask_j = formattedMask[cells[idx][j]];
                        if (bitmask == bitmask_j) {
                            bitmask >>= 16;
                            int c0, c1, k = 0;
                            while ((bitmask & 1) == 0) {
                                k++;
                                bitmask >>= 1;
                            }
                            c0 = k;
                            bitmask >>= 1;
                            k++;
                            while ((bitmask & 1) == 0) {
                                k++;
                                bitmask >>= 1;
                            }
                            c1 = k;
                            for (int cellIdx = 0; cellIdx < 9; cellIdx++) {
                                if (cellIdx != i && cellIdx != j) {
                                    int cell = cells[idx][cellIdx];
                                    if (!lineMask[vIndex][cell][c0]) {
                                        disable(cell, c0);
                                        lineMask[vIndex][cell][c0] = true;
                                        lineCounters[vIndex]++;
                                    }
                                    if (!lineMask[vIndex][cell][c1]) {
                                        disable(cell, c1);
                                        lineMask[vIndex][cell][c1] = true;
                                        lineCounters[vIndex]++;
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    final private void checkNakedTriples(int vIndex) {

        generateFormattedMasks();

        for (int i = 0; i < 81; i++) {
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 3) {
                for (int j = i+1; j < (i/9+1)*9; j++) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                        for (int k = j+1; k < (i/9+1)*9; k++) {
                            int bitmask_k = formattedMask[k];
                            if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                int bitmask_shifted = bitmask >> 16;
                                int c0, c1, c2, l = 0;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c0 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c1 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c2 = l;
                                for (int cell = (i/9)*9; cell < (i/9+1)*9; cell++) {
                                    if (cell != i && cell != j && cell != k) {
                                        if (!lineMask[vIndex][cell][c0]) {
                                            disable(cell, c0);
                                            lineMask[vIndex][cell][c0] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c1]) {
                                            disable(cell, c1);
                                            lineMask[vIndex][cell][c1] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c2]) {
                                            disable(cell, c2);
                                            lineMask[vIndex][cell][c2] = true;
                                            lineCounters[vIndex]++;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 81; idx++) {
            int i = (idx%9)*9 + idx/9;
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 3) {
                for (int j = i+9; j < 81; j += 9) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                        for (int k = j+9; k < 81; k += 9) {
                            int bitmask_k = formattedMask[k];
                            if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                int bitmask_shifted = bitmask >> 16;
                                int c0, c1, c2, l = 0;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c0 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c1 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c2 = l;
                                for (int cell = i%9; cell < 81; cell += 9) {
                                    if (cell != i && cell != j && cell != k) {
                                        if (!lineMask[vIndex][cell][c0]) {
                                            disable(cell, c0);
                                            lineMask[vIndex][cell][c0] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c1]) {
                                            disable(cell, c1);
                                            lineMask[vIndex][cell][c1] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c2]) {
                                            disable(cell, c2);
                                            lineMask[vIndex][cell][c2] = true;
                                            lineCounters[vIndex]++;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 9; idx++) {
            for (int i = 0; i < 9; i++) {
                int bitmask = formattedMask[cells[idx][i]];
                if ((bitmask & 0xffff) == 3) {
                    for (int j = i+1; j < 9; j++) {
                        int bitmask_j = formattedMask[cells[idx][j]];
                        if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                            for (int k = j+1; k < 9; k++) {
                                int bitmask_k = formattedMask[cells[idx][k]];
                                if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                    int bitmask_shifted = bitmask >> 16;
                                    int c0, c1, c2, l = 0;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c0 = l;
                                    bitmask_shifted >>= 1;
                                    l++;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c1 = l;
                                    bitmask_shifted >>= 1;
                                    l++;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c2 = l;
                                    for (int cellIdx = 0; cellIdx < 9; cellIdx++) {
                                        if (cellIdx != i && cellIdx != j && cellIdx != k) {
                                            int cell = cells[idx][cellIdx];
                                            if (!lineMask[vIndex][cell][c0]) {
                                                disable(cell, c0);
                                                lineMask[vIndex][cell][c0] = true;
                                                lineCounters[vIndex]++;
                                            }
                                            if (!lineMask[vIndex][cell][c1]) {
                                                disable(cell, c1);
                                                lineMask[vIndex][cell][c1] = true;
                                                lineCounters[vIndex]++;
                                            }
                                            if (!lineMask[vIndex][cell][c2]) {
                                                disable(cell, c2);
                                                lineMask[vIndex][cell][c2] = true;
                                                lineCounters[vIndex]++;
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

    }

    final private void identifyLines(int vIndex) {

        int disabledLines = 0;
        int[][] tempRowMask = new int[3][9];
        int[][] tempColMask = new int[3][9];
        for (int i = 0; i < 9; i++) {
            for (int c = 0; c < 9; c++) {
                for (int j = 0; j < 3; j++) {
                    tempRowMask[j][c] = 0;
                    tempColMask[j][c] = 0;
                }
                for (int j = 0; j < 9; j++) {
                    if (mask[cells[i][j]][c] == 0) {
                        tempRowMask[j/3][c]++;
                        tempColMask[j%3][c]++;
                    }
                }

                int rowCount = 0;
                int colCount = 0;
                int rowIdx = -1, colIdx = -1;
                for (int j = 0; j < 3; j++) {
                    if (tempRowMask[j][c] > 0) {
                        rowCount++;
                        rowIdx = j;
                    }
                    if (tempColMask[j][c] > 0) {
                        colCount++;
                        colIdx = j;
                    }
                }
                if (rowCount == 1) {
                    for (int j = (i/3)*3; j < (i/3 + 1)*3; j++) {
                        if (j != i) {
                            for (int k = rowIdx*3; k < (rowIdx+1)*3; k++) {
                                int cell = cells[j][k];
                                if (!lineMask[vIndex][cell][c]) {
                                    disable(cell, c);
                                    lineMask[vIndex][cell][c] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }

                }
                if (colCount == 1) {
                    for (int j = i % 3; j < 9; j += 3) {
                        if (j != i) {
                            for (int k = colIdx; k < 9; k += 3) {
                                int cell = cells[j][k];
                                if (!lineMask[vIndex][cell][c]) {
                                    disable(cell, c);
                                    lineMask[vIndex][cell][c] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    final private boolean isPossible(int v, int c) {
        return mask[v][c] == 0;
    }

    final private int checkMask(int[][] neighbors, int v, int c) {
        int tempValue = 0;
        for (int n : neighbors[v]) {
            if (mask[n][c] > 0) {
                tempValue++;
            }
        }
        return tempValue;
    }

    final private void put(int v, int c) {
        solvedBoard[v] = c;
        for (int i : neighbors[v]) {
            mask[i][c]++;
        }
        for (int i = 0; i < 9; i++) {
            mask[v][i]++;
        }
    }

    final private void disable(int v, int c) {
        mask[v][c]++;
    }

    final private void unput(int v, int c) {
        solvedBoard[v] = -1;
        for (int i : neighbors[v]) {
            mask[i][c]--;
        }
        for (int i = 0; i < 9; i++) {
            mask[v][i]--;
        }       
    }

    final private void enable(int v, int c) {
        // enables++;
        mask[v][c]--;
    }

    public String getString(int[] board) {
        StringBuilder s = new StringBuilder();
        for (int i : board) {
            s.append(i+1);
        }
        return s.toString();
    }

    public long getTime() {
        return totTime;
    }

    public static String printTime(long t1, long t2) {
        String unit = " ns";
        if (t2-t1 > 10000) {
            unit = " us";
            t1 /= 1000; t2 /= 1000;
        }
        if (t2-t1 > 10000) {
            unit = " ms";
            t1 /= 1000; t2 /= 1000;
        }
        if (t2-t1 > 10000) {
            unit = " seconds";
            t1 /= 1000; t2 /= 1000;
        }
        return (t2-t1) + unit;
    }

    public void display(int[] board) {

        for (int i = 0; i < 9; i++) {
            if (i % 3 == 0) {
                System.out.println("+-----+-----+-----+");
            }
            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (board[i*9+j] != -1) {
                    System.out.print(board[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }
            System.out.println("|");
        }
        System.out.println("+-----+-----+-----+");
    }

    public void display2(int[] board, int[] solved) {

        for (int i = 0; i < 9; i++) {
            if (i % 3 == 0) {
                System.out.println("+-----+-----+-----+  +-----+-----+-----+");
            }
            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (board[i*9+j] != -1) {
                    System.out.print(board[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }

            System.out.print("|  ");

            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (solved[i*9+j] != -1) {
                    System.out.print(solved[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }

            System.out.println("|");
        }
        System.out.println("+-----+-----+-----+  +-----+-----+-----+");
    }

    private boolean contains(int[] a, int v) {
        for (int i : a) {
            if (i == v) {
                return true;
            }
        }
        return false;
    }

    public void connect() {
        for (int i = 0; i < 81; i++) {
            for (int j = 0; j < 20; j++) {
                neighbors[i][j] = -1;
            }
        }
        int[] n_count = new int[81];

        HashMap<Integer,ArrayList<Integer>> map 
            = new HashMap<Integer,ArrayList<Integer>>();

        for (int[] c: cells) {
            ArrayList<Integer> temp = new ArrayList<Integer>();
            for (int v : c) {
                temp.add(v);
            }
            for (int v : c) {
                map.put(v,temp);
            }
        }

        for (int i = 0; i < 81; i++) {
            for (int j = (i/9)*9; j < (i/9)*9 + 9; j++) {
                if (i != j) {
                    neighbors[i][n_count[i]++] = j;
                }
            }
            for (int j = i%9; j < 81; j += 9) {
                if (i != j) {
                    neighbors[i][n_count[i]++] = j;
                }
            }
            for (int j : map.get(i)) {
                if (i != j) {
                    if (!contains(neighbors[i], j)) {
                        neighbors[i][n_count[i]++] = j;
                    }
                }
            }
        }
    }

    public static int[][] getInput(String filename) {
        int[][] boards;
        try (BufferedInputStream in = new BufferedInputStream(
            new FileInputStream(filename))) {

            BufferedReader r = new BufferedReader(
                new InputStreamReader(in, StandardCharsets.UTF_8));
            int n = Integer.valueOf(r.readLine());
            boards = new int[n][81];
            clues = new int[n];
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < 81; j++) {
                    int x = r.read();
                    boards[i][j] = x - 49;
                    clues[i] += x > 48 ? 1 : 0;
                }
                r.read();
            }
            r.close();
        } catch (IOException ex) {
            throw new RuntimeException(ex);
        }
        return boards;
    }

    private int getTotEasy() {
        return totEasy;
    }

    public String getSolution() {
        StringBuilder s = new StringBuilder(256);
        for (int i : unsolvedBoard) {
            s.append(i+1);
        }
        s.append(",");
        for (int i : solvedBoard) {
            s.append(i+1);
        }
        return s.toString();
    }

    public static void main (String[] args) {
        long t0 = System.nanoTime();
        Sudoku gc = new Sudoku();
        File f;
        PrintWriter p;
        try {
            f = new File("sudoku_output.txt");
            p = new PrintWriter(f);
        } catch (Exception e) {
            return;
        }
        if (args.length != 1) {
            System.out.println("Usage: java Sudoku <input_file>");
            return;
        }
        int[][] boards = gc.getInput(args[0]);
        long tinp = System.nanoTime();
        gc.connect();
        long t1 = System.nanoTime();
        p.println(boards.length);

        long maxSolveTime = 0;
        int maxSolveIndex = 0;
        long[] solveTimes = new long[boards.length];
        for (int i = 0; i < boards.length; i++) {
            long tempTime = System.nanoTime();
            if (tempTime - gc.lastPrint > 200_000_000 
                || i == boards.length - 1) {

                gc.shouldPrint = true;
                gc.lastPrint = tempTime;
                System.out.print(String.format(
                    "\r(%7d/%7d) ", i+1, boards.length));
            }
            long elapsed = gc.solveSudoku(boards[i], gc.clues[i]);
            if (elapsed == -1) {
                System.out.println("Impossible: " + i);
            }
            if (elapsed > maxSolveTime) {
                maxSolveTime = elapsed;
                maxSolveIndex = i;
            }
            solveTimes[i] = elapsed;
            p.println(gc.getSolution());
            // break;
        }

        p.close();
        long t2 = System.nanoTime();
        Arrays.sort(solveTimes);
        System.out.println();
        System.out.println("Median solve time: " 
            + gc.printTime(0, solveTimes[boards.length/2]));
        System.out.println("Longest solve time: " 
            + gc.printTime(0, maxSolveTime) + " for board " + maxSolveIndex);
        gc.display(boards[maxSolveIndex]);
        System.out.println();

        System.out.println("Total time (including prints): " 
            + gc.printTime(t0,t2));
        System.out.println("Sudoku solving time: " 
            + gc.printTime(0,gc.getTime()));
        System.out.println("Average time per board: " 
            + gc.printTime(0,gc.getTime()/boards.length));
        System.out.println("Number of one-choice digits per board: " 
            + String.format("%.2f", gc.getTotEasy()/(double)boards.length));  
        System.out.println("Easily solvable boards: " + gc.easySolved);
        System.out.println("\nInput time: " + gc.printTime(t0,tinp));
        System.out.println("Connect time: " + gc.printTime(tinp,t1));
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {

        }
    }
}
maxb
quelle
2

C ++ mit Minisat (2.2.1-5) - 11.735s offizielles Ergebnis

Dies ist bei weitem nicht so schnell wie ein spezialisierter Algorithmus, aber es ist ein anderer Ansatz, ein interessanter Bezugspunkt und einfach zu verstehen.

$ clang ++ -o solve -lminisat solver_minisat.cc

#include <minisat/core/Solver.h>

namespace {

using Minisat::Lit;
using Minisat::mkLit;
using namespace std;

struct SolverMiniSat {
    Minisat::Solver solver;

    SolverMiniSat() {
        InitializeVariables();
        InitializeTriadDefinitions();
        InitializeTriadOnnes();
        InitializeCellOnnes();
    }

    // normal cell literals, of which we have 9*9*9
    static Lit Literal(int row, int column, int value) {
        return mkLit(value + 9 * (column + 9 * row), true);
    }

    // horizontal triad literals, of which we have 9*3*9, starting after the cell literals
    static Lit HTriadLiteral(int row, int column, int value) {
        int base = 81 * 9;
        return mkLit(base + value + 9 * (column + 3 * row));
    }

    // vertical triad literals, of which we have 3*9*9, starting after the h_triad literals
    static Lit VTriadLiteral(int row, int column, int value) {
        int base = (81 + 27) * 9;
        return mkLit(base + value + 9 * (row + 3 * column));
    }

    void InitializeVariables() {
        for (int i = 0; i < 15 * 9 * 9; i++) {
            solver.newVar();
        }
    }

    // create an exactly-one constraint over a set of literals
    void CreateOnne(const Minisat::vec<Minisat::Lit> &literals) {
        solver.addClause(literals);
        for (int i = 0; i < literals.size() - 1; i++) {
            for (int j = i + 1; j < literals.size(); j++) {
                solver.addClause(~literals[i], ~literals[j]);
            }
        }
    }

    void InitializeTriadDefinitions() {
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 3; j++) {
                for (int value = 0; value < 9; value++) {
                    Lit h_triad = HTriadLiteral(i, j, value);
                    Lit v_triad = VTriadLiteral(j, i, value);
                    int j0 = j * 3 + 0, j1 = j * 3 + 1, j2 = j * 3 + 2;

                    Minisat::vec<Minisat::Lit> h_triad_def;
                    h_triad_def.push(Literal(i, j0, value));
                    h_triad_def.push(Literal(i, j1, value));
                    h_triad_def.push(Literal(i, j2, value));
                    h_triad_def.push(~h_triad);
                    CreateOnne(h_triad_def);

                    Minisat::vec<Minisat::Lit> v_triad_def;
                    v_triad_def.push(Literal(j0, i, value));
                    v_triad_def.push(Literal(j1, i, value));
                    v_triad_def.push(Literal(j2, i, value));
                    v_triad_def.push(~v_triad);
                    CreateOnne(v_triad_def);
                }
            }
        }
    }

    void InitializeTriadOnnes() {
        for (int i = 0; i < 9; i++) {
            for (int value = 0; value < 9; value++) {
                Minisat::vec<Minisat::Lit> row;
                row.push(HTriadLiteral(i, 0, value));
                row.push(HTriadLiteral(i, 1, value));
                row.push(HTriadLiteral(i, 2, value));
                CreateOnne(row);

                Minisat::vec<Minisat::Lit> column;
                column.push(VTriadLiteral(0, i, value));
                column.push(VTriadLiteral(1, i, value));
                column.push(VTriadLiteral(2, i, value));
                CreateOnne(column);

                Minisat::vec<Minisat::Lit> hbox;
                hbox.push(HTriadLiteral(3 * (i / 3) + 0, i % 3, value));
                hbox.push(HTriadLiteral(3 * (i / 3) + 1, i % 3, value));
                hbox.push(HTriadLiteral(3 * (i / 3) + 2, i % 3, value));
                CreateOnne(hbox);

                Minisat::vec<Minisat::Lit> vbox;
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 0, value));
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 1, value));
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 2, value));
                CreateOnne(vbox);
            }
        }
    }

    void InitializeCellOnnes() {
        for (int row = 0; row < 9; row++) {
            for (int column = 0; column < 9; column++) {
                Minisat::vec<Minisat::Lit> literals;
                for (int value = 0; value < 9; value++) {
                    literals.push(Literal(row, column, value));
                }
                CreateOnne(literals);
            }
        }
    }

    bool SolveSudoku(const char *input, char *solution, size_t *num_guesses) {
        Minisat::vec<Minisat::Lit> assumptions;
        for (int row = 0; row < 9; row++) {
            for (int column = 0; column < 9; column++) {
                char digit = input[row * 9 + column];
                if (digit != '.') {
                    assumptions.push(Literal(row, column, digit - '1'));
                }
            }
        }
        solver.decisions = 0;
        bool satisfied = solver.solve(assumptions);
        if (satisfied) {
            for (int row = 0; row < 9; row++) {
                for (int column = 0; column < 9; column++) {
                    for (int value = 0; value < 9; value++) {
                        if (solver.model[value + 9 * (column + 9 * row)] ==
                            Minisat::lbool((uint8_t) 1)) {
                            solution[row * 9 + column] = value + '1';
                        }
                    }
                }
            }
        }
        *num_guesses = solver.decisions - 1;
        return satisfied;
    }
};

} //end anonymous namespace

int main(int argc, const char **argv) {
    char *puzzle = NULL;
    char solution[81];
    size_t size, guesses;

    SolverMiniSat solver;

    while (getline(&puzzle, &size, stdin) != -1) {
        int count = solver.SolveSudoku(puzzle, solution, &guesses);
        printf("%.81s:%d:%.81s\n", puzzle, count, solution);
    }
}
53 x 15
quelle