Erstellen Sie einen Bitzählkomparator mit NAND-Logikgattern

11

Ein Bitzählkomparator (BCC) ist eine Logikschaltung, die eine bestimmte Anzahl von Zähleingängen A1, A2, A3, ..., Ansowie Eingaben, B1, B2, B4, B8, ...die eine Zahl darstellen, verwendet. Es kehrt dann zurück , 1wenn die Gesamtzahl der AEingänge , die an sind , ist größer als die Anzahl von den binär dargestellt BEingängen (zB B1, B2und B8würde die Anzahl machen 11), und aus 0anderen Gründen .

Zum Beispiel für eine Bit-Zählung Komparator, nimmt 5Eingänge, von denen A2, A4, A5, und B2eingestellt sind 1, kehrt , 1da es 3 AEingänge , die eingeschaltet sind, die größer ist 2(die Zahl repräsentiert durch nur B2Wesen auf).

Ihre Aufgabe ist es, einen Bitzählkomparator zu erstellen, der insgesamt 16 AEingänge und 4 BEingänge (die Bits von 1bis darstellen 8) verwendet, wobei nur NAND-Gatter mit zwei Eingängen und so wenige NAND-Gatter wie möglich verwendet werden. Zur Vereinfachung können Sie in Ihrem Diagramm UND-, ODER-, NICHT- und XOR-Gatter mit den folgenden entsprechenden Bewertungen verwenden:

  • NOT: 1
  • AND: 2
  • OR: 3
  • XOR: 4

Jede dieser Bewertungen entspricht der Anzahl der NAND-Gatter, die zum Aufbau des entsprechenden Gatters erforderlich sind.

Die Logikschaltung, die die wenigsten NAND-Gatter verwendet, um eine korrekte Konstruktion zu erzeugen, gewinnt.

Joe Z.
quelle
Also wird jede Antwort gewinnen, die überhaupt keine NAND-Gatter verwendet? Das sollte einfach sein. Darf ich UND-Gatter mit 16 Eingängen verwenden?
r3mainer
@squeamishossifrage Hast du die Frage gelesen? UND-Tore erhöhen Ihre Punktzahl um 2.
Rainbolt
@squeamishossifrage Eins AND== zweiNAND
Timtech
1
@squeamishossifrage, " nur NAND-Gatter verwenden". Die Punktzahlen für andere Gates sind die Mindestanzahl von NAND-Gates, die zum Erstellen dieser Gates erforderlich sind. Im Wesentlichen werden einige Komfortmakros definiert.
Peter Taylor
1
@ user80551 Sie benötigen 16 Bit, um festzustellen, ob 16 Bit EIN oder AUS sind. Sie benötigen 4 Bits, um eine 4-Bit-Zahl darzustellen. Die Anzahl der EIN-Bits muss größer als die 4-Bit-Anzahl sein. Ich verstehe nicht wirklich, warum das so schwierig ist. Siehe den Teil der Frage, der besagt, dass die Gesamtzahl der eingeschalteten A-Eingänge größer ist als die Anzahl der B-Eingänge. ?
Rainbolt

Antworten:

7

169 nands

Addiert die A's, um A {1,2,4,8,16} zu erhalten. Dann wird ein binärer Vergleich mit dem Bs durchgeführt.

Ich benutze noch ein paar Bausteine:

  • FA = Volladdierer, 9 Nands ( von hier )
  • HA = halber Addierer, 7 nands (gleiche Referenz)
  • EQ = Gleichheit, 5 Tore (aka xnor)

Die Halb- und Volladdierer haben 2 Ausgänge - sie werden mit einem r für das Ergebnis und einem c für den Übertrag unterschieden.

Die A {1,2,4,8,16} sind die Ausgaben der Halbaddierer.

Geben Sie hier die Bildbeschreibung ein

Keith Randall
quelle
1
Beeindruckend. Einfach wow. Beachten Sie, dass ein halber Addierer in nur 5 Gates erstellt werden kann: codegolf.stackexchange.com/a/10848/9498 , 4 für xor und 1, um das erste nand im xor zu invertieren. Also bekommen wir ein xor und ein und. Bild: i.stack.imgur.com/qCFxa.png
Justin
@Quincunx: Danke, der bessere Halbaddierer senkt die Anzahl auf 161. Ich glaube nicht, dass wir ein Quartusdiagramm brauchen, aber wenn Sie möchten, kann ich die Antwort damit aktualisieren.
Keith Randall
5

751 nand Tore

module BitCountingComparator(A, B, O);
    input [15:0] A;
    input [3:0] B;
    output O;

    wire [15:1] is;
    assign is[1] = A[0] | A[1] | A[2] | A[3] | A[4] | A[5] | A[6] | A[7] | A[8] | A[9] | A[10] | A[11] | A[12] | A[13] | A[14] | A[15];

    wire [14:0] and2;
    assign and2[0] = A[0] & A[1];
    assign and2[1] = A[1] & A[2];
    assign and2[2] = A[2] & A[3];
    assign and2[3] = A[3] & A[4];
    assign and2[4] = A[4] & A[5];
    assign and2[5] = A[5] & A[6];
    assign and2[6] = A[6] & A[7];
    assign and2[7] = A[7] & A[8];
    assign and2[8] = A[8] & A[9];
    assign and2[9] = A[9] & A[10];
    assign and2[10] = A[10] & A[11];
    assign and2[11] = A[11] & A[12];
    assign and2[12] = A[12] & A[13];
    assign and2[13] = A[13] & A[14];
    assign and2[14] = A[14] & A[15];

    wire [13:0] and3;
    assign and3[0] = and2[0] & A[2];
    assign and3[1] = and2[1] & A[3];
    assign and3[2] = and2[2] & A[4];
    assign and3[3] = and2[3] & A[5];
    assign and3[4] = and2[4] & A[6];
    assign and3[5] = and2[5] & A[7];
    assign and3[6] = and2[6] & A[8];
    assign and3[7] = and2[7] & A[9];
    assign and3[8] = and2[8] & A[10];
    assign and3[9] = and2[9] & A[11];
    assign and3[10] = and2[10] & A[12];
    assign and3[11] = and2[11] & A[13];
    assign and3[12] = and2[12] & A[14];
    assign and3[13] = and2[13] & A[15];

    wire [12:0] and4;
    assign and4[0] = and3[0] & A[3];
    assign and4[1] = and3[1] & A[4];
    assign and4[2] = and3[2] & A[5];
    assign and4[3] = and3[3] & A[6];
    assign and4[4] = and3[4] & A[7];
    assign and4[5] = and3[5] & A[8];
    assign and4[6] = and3[6] & A[9];
    assign and4[7] = and3[7] & A[10];
    assign and4[8] = and3[8] & A[11];
    assign and4[9] = and3[9] & A[12];
    assign and4[10] = and3[10] & A[13];
    assign and4[11] = and3[11] & A[14];
    assign and4[12] = and3[12] & A[15];

    wire [11:0] and5;
    assign and5[0] = and4[0] & A[4];
    assign and5[1] = and4[1] & A[5];
    assign and5[2] = and4[2] & A[6];
    assign and5[3] = and4[3] & A[7];
    assign and5[4] = and4[4] & A[8];
    assign and5[5] = and4[5] & A[9];
    assign and5[6] = and4[6] & A[10];
    assign and5[7] = and4[7] & A[11];
    assign and5[8] = and4[8] & A[12];
    assign and5[9] = and4[9] & A[13];
    assign and5[10] = and4[10] & A[14];
    assign and5[11] = and4[11] & A[15];

    wire [10:0] and6;
    assign and6[0] = and5[0] & A[5];
    assign and6[1] = and5[1] & A[6];
    assign and6[2] = and5[2] & A[7];
    assign and6[3] = and5[3] & A[8];
    assign and6[4] = and5[4] & A[9];
    assign and6[5] = and5[5] & A[10];
    assign and6[6] = and5[6] & A[11];
    assign and6[7] = and5[7] & A[12];
    assign and6[8] = and5[8] & A[13];
    assign and6[9] = and5[9] & A[14];
    assign and6[10] = and5[10] & A[15];

    wire [9:0] and7;
    assign and7[0] = and6[0] & A[6];
    assign and7[1] = and6[1] & A[7];
    assign and7[2] = and6[2] & A[8];
    assign and7[3] = and6[3] & A[9];
    assign and7[4] = and6[4] & A[10];
    assign and7[5] = and6[5] & A[11];
    assign and7[6] = and6[6] & A[12];
    assign and7[7] = and6[7] & A[13];
    assign and7[8] = and6[8] & A[14];
    assign and7[9] = and6[9] & A[15];

    wire [8:0] and8;
    assign and8[0] = and7[0] & A[7];
    assign and8[1] = and7[1] & A[8];
    assign and8[2] = and7[2] & A[9];
    assign and8[3] = and7[3] & A[10];
    assign and8[4] = and7[4] & A[11];
    assign and8[5] = and7[5] & A[12];
    assign and8[6] = and7[6] & A[13];
    assign and8[7] = and7[7] & A[14];
    assign and8[8] = and7[8] & A[15];

    wire [7:0] and9;
    assign and9[0] = and8[0] & A[8];
    assign and9[1] = and8[1] & A[9];
    assign and9[2] = and8[2] & A[10];
    assign and9[3] = and8[3] & A[11];
    assign and9[4] = and8[4] & A[12];
    assign and9[5] = and8[5] & A[13];
    assign and9[6] = and8[6] & A[14];
    assign and9[7] = and8[7] & A[15];

    wire [6:0] and10;
    assign and10[0] = and9[0] & A[9];
    assign and10[1] = and9[1] & A[10];
    assign and10[2] = and9[2] & A[11];
    assign and10[3] = and9[3] & A[12];
    assign and10[4] = and9[4] & A[13];
    assign and10[5] = and9[5] & A[14];
    assign and10[6] = and9[6] & A[15];

    wire [5:0] and11;
    assign and11[0] = and10[0] & A[10];
    assign and11[1] = and10[1] & A[11];
    assign and11[2] = and10[2] & A[12];
    assign and11[3] = and10[3] & A[13];
    assign and11[4] = and10[4] & A[14];
    assign and11[5] = and10[5] & A[15];

    wire [4:0] and12;
    assign and12[0] = and11[0] & A[11];
    assign and12[1] = and11[1] & A[12];
    assign and12[2] = and11[2] & A[13];
    assign and12[3] = and11[3] & A[14];
    assign and12[4] = and11[4] & A[15];

    wire [3:0] and13;
    assign and13[0] = and12[0] & A[12];
    assign and13[1] = and12[1] & A[13];
    assign and13[2] = and12[2] & A[14];
    assign and13[3] = and12[3] & A[15];

    wire [2:0] and14;
    assign and14[0] = and13[0] & A[13];
    assign and14[1] = and13[1] & A[14];
    assign and14[2] = and13[2] & A[15];

    wire [1:0] and15;
    assign and15[0] = and14[0] & A[14];
    assign and15[1] = and14[1] & A[15];

    wire and16;
    assign and16 = and15[0] & A[15];

    assign is[2] = and2[0] | and2[1] | and2[2] | and2[3] | and2[4] | and2[5] | and2[6] | and2[7] | and2[8] | and2[9] | and2[10] | and2[11] | and2[12] | and2[13] | and2[15];

    assign is[3] = and3[0] | and3[1] | and3[2] | and3[3] | and3[4] | and3[5] | and3[6] | and3[7] | and3[8] | and3[9] | and3[10] | and3[11] | and3[12] | and3[14];

    assign is[4] = and4[0] | and4[1] | and4[2] | and4[3] | and4[4] | and4[5] | and4[6] | and4[7] | and4[8] | and4[9] | and4[10] | and4[11] | and4[13];

    assign is[5] = and5[0] | and5[1] | and5[2] | and5[3] | and5[4] | and5[5] | and5[6] | and5[7] | and5[8] | and5[9] | and5[10] | and5[12];

    assign is[6] = and6[0] | and6[1] | and6[2] | and6[3] | and6[4] | and6[5] | and6[6] | and6[7] | and6[8] | and6[9] | and6[11];

    assign is[7] = and7[0] | and7[1] | and7[2] | and7[3] | and7[4] | and7[5] | and7[6] | and7[7] | and7[8] | and7[10];

    assign is[8] = and8[0] | and8[1] | and8[2] | and8[3] | and8[4] | and8[5] | and8[6] | and8[7] | and8[9];

    assign is[9] = and9[0] | and9[1] | and9[2] | and9[3] | and9[4] | and9[5] | and9[6] | and9[8];

    assign is[10] = and10[0] | and10[1] | and10[2] | and10[3] | and10[4] | and10[5] | and10[7];

    assign is[11] = and11[0] | and11[1] | and11[2] | and11[3] | and11[4] | and11[6];

    assign is[12] = and12[0] | and12[1] | and12[2] | and12[3] | and12[5];

    assign is[13] = and13[0] | and13[1] | and13[2] | and13[4];

    assign is[14] = and14[0] | and14[1] | and14[3];

    assign is[15] = and15[0] | and15[2];

    assign is[16] = and16;


    wire [15:1] eB;
    eB[1] = B[0];
    eB[2] = B[1];
    eB[3] = B[1] & B[0];
    eB[4] = B[2];
    eB[5] = B[2] & B[0];
    eB[6] = B[2] & B[1];
    eB[7] = eB[6] & B[0];
    eB[8] = B[3];
    eB[9] = B[3] & B[0];
    eB[10] = B[3] & B[1];
    eB[11] = eB[10] & B[0];
    eB[12] = B[3] & B[2];
    eB[13] = eB[12] & B[0];
    eB[14] = eB[12] & B[1];
    eB[15] = eB[14] & B[0];

    assign O = is[1] & ~is[2] & ~eB[1] |
        is[2] & ~is[3] & ~eB[2] |
        is[3] & ~is[4] & ~eB[3] |
        is[4] & ~is[5] & ~eB[4] |
        is[5] & ~is[6] & ~eB[5] |
        is[6] & ~is[7] & ~eB[6] |
        is[7] & ~is[8] & ~eB[7] |
        is[8] & ~is[9] & ~eB[8] |
        is[9] & ~is[10] & ~eB[9] |
        is[10] & ~is[11] & ~eB[10] |
        is[11] & ~is[12] & ~eB[11] |
        is[12] & ~is[13] & ~eB[12] |
        is[13] & ~is[14] & ~eB[13] |
        is[14] & ~is[15] & ~eB[14] |
        is[15] & ~eB[15];
endmodule

Dies ist noch nicht vollständig Golf gespielt. Ich habe die Antwort in Verilog gegeben, weil ich auf diese Weise ein Programm schreiben konnte, um jeden Abschnitt auszugeben. Wenn es obligatorisch ist, mit einem Diagramm zu antworten, lassen Sie es mich bitte wissen. Sie sind gleichwertig. &ist und ~ist nicht und |ist oder.

Meine Strategie:

  • nimm Aund setze alle 1s auf die niedrigen Zahlen, speichere in is. (Dies ist der Großteil des Programms)
  • nimm es Bund pack es in 16 Bit aus (ich nannte es eBfür erweitert B)
  • mache eine einfache Überprüfung.
Justin
quelle