Perlenkette auffädeln

18

Überblick

Pearls (oder Masyu) ist ein Logikspiel, das auf einem Raster gespielt wird. Es gibt schwarze und weiße Perlen auf dem Gitter. Das Ziel ist es, eine einzelne, geschlossene Schleife zu bilden , die jede Perle nur mit geraden Liniensegmenten und rechten Winkeln durchläuft.

Es gibt einige Regeln, die bestimmen, wie die Schleife mit Perlen interagiert:

  • Weiße Perlen müssen gerade durchlaufen werden, aber die Schleife muss sich in der vorherigen und / oder nächsten Zelle auf ihrem Weg drehen .
  • Schwarze Perlen müssen einge auf, aber die Schleife muss reisen gerade durch die nächsten und vorherigen Zellen in seinem Weg.
  • Die Schleife darf sich nicht kreuzen oder anderweitig kreuzen. Alle Zellen haben genau null oder zwei Schleifenein- / ausgänge.

Ein Beispielpuzzle aus Wikipedia (und seiner Lösung):

Bildbeschreibung hier eingeben Bildbeschreibung hier eingeben

Ihr Ziel ist es, ein bestimmtes Rätsel zu lösen. Wenn es mehrere mögliche Lösungen gibt, spielt es keine Rolle, welche Sie geben.

Eingang

Die Eingabe ist ein ungelöstes quadratisches Gitter. Das oben gezeigte Beispiel würde folgendermaßen aussehen:

..w.w.....
....w...b.
..b.b.w...
...w..w...
b....w...w
..w....w..
..b...w...
w...b....w
......ww..
..b......b

wist eine weiße Perle, bist eine schwarze Perle und .ist eine leere Zelle.

Angenommen, die Eingabe ist gültig. Dies bedeutet, dass es gut geformt ist und mindestens eine Lösung möglich ist. Alle gültigen Rätsel sind mindestens 3x3 und enthalten mindestens eine Perle.

Ausgabe

Die Ausgabe ist eine Folge von Koordinaten, die den Pfad darstellen. Die linke obere Ecke des Gitters ist 0 0, die rechte obere Ecke ist n-1 0, wobei n die Breite des Gitters ist.

Ein Pfad besteht einfach aus einer Reihe geordneter Koordinaten:

x1 y1 x2 y2 x3 y3 ...

Es wird davon ausgegangen, dass der Pfad geschlossen ist, sodass Sie die erste Koordinate am Ende nicht wiederholen müssen , es gibt jedoch keine Strafe dafür.

Die Ausgabe sollte aus mindestens allen Ecken im Pfad bestehen. Sie müssen nicht jede Zelle auf dem Pfad ausgeben, wenn es keine Kurve gibt. Die Ausgabe für das Beispiel könnte beispielsweise beginnen mit:

1 0 5 0 5 1 ...

oder

1 0 2 0 3 0 4 0 5 0 5 1 ...

Ausgabe sollte nicht jede Zelle nicht im Pfad enthalten. Sie können an einer beliebigen Zelle im Pfad beginnen.


Ausschnitt

Hier ist ein Ausschnitt, mit dem Sie Ihre Lösung visualisieren können. Fügen Sie einfach das Raster ein, an dem Sie arbeiten, und den Pfad, den Sie ausgeben. Mir ist bewusst, dass es schmerzhaft ist, meinen Code zu betrachten.


Testfälle

Diese Testfälle zeigen eine mögliche Ausgabe für jede Eingabe (mit Ausnahme der letzten, die als ungelöst angezeigt wird). Möglicherweise gibt es andere gültige Pfade, Sie können im Uhrzeigersinn oder gegen den Uhrzeigersinn fahren oder an einem anderen Punkt beginnen usw. Die Lösungen sollten in der Lage sein, die Testfälle in Sekunden / Minuten / Stunden und nicht in Tagen / Wochen / Äonen zu lösen.

Perle-3

...
w..
..b

0 0 1 0 2 0 2 1 2 2 1 2 0 2 0 1

Perle-6

.wb..b
......
..b...
w.ww..
......
b....b

0 0 2 0 2 2 4 2 4 1 3 1 3 0 5 0 5 5 3 5 3 4 4 4 4 3 1 3 1 4 2 4 2 5 0 5 0 2 1 2 1 1 0 1

Perle-12

.....w.b.w..
ww..b...b...
.w.....b....
...wbww..b.b
....b.......
w.w.........
..w......b.b
.....bb.....
.....b.....w
w.ww..b.....
...w......w.
b..w.....b..
Geobits
quelle
Sie haben die Lösung für den letzten Testfall nicht angegeben ...
mbomb007
2
@ mbomb007 Richtig.
Geobits
Also gibt es keine Lösung?
mbomb007
2
Es gibt eine Lösung. Ich ließ es offen, damit die Antworten etwas für ihre Bemühungen zeigten. Es kann auch hilfreich sein, ein oder zwei Rätsel von Hand zu lösen, um ein Gefühl für die Regeln zu bekommen. Dies ist schwierig, wenn alle Beispiele bereits gelöst sind.
Geobits
Wird ein Gitter mit 2x2 oder größer ohne Perlen als gültig angesehen (der zweite Satz legt nahe, dass dies nicht der Fall ist, und der Punkt, an dem die Eingabe ungelöst ist (wenn es keine nicht aufgereihten Perlen gibt, muss er gelöst werden)? Wenn ja, würden Sie eine Schleife ohne Perlen erwarten, oder was genau? Vermutlich muss keine bestimmte Farbe vorhanden sein?
VisualMelon

Antworten:

7

C 590 640 760 880 963 1018

Brute Force ist dafür ziemlich schnell. Der 12x12 Test läuft unter 10ms. Zu wissen, dass sich für eine Sprache entscheiden könnte, die besser zum Golfen geeignet ist.

Ich gehe nicht davon aus, dass das Brett quadratisch ist, da die größeren Puzzles nicht quadratisch sind.

Das WDefine legt die Grenze für die Platinenabmessungen fest. Die tatsächliche Grenze ist kleiner, W - 2da ich zusätzliche Zeilen für Rahmen verwende, um Grenzüberprüfungen zu vermeiden.

#define W 40
int Y,X,T,P,Q[W*W],D[]={-W,-1,1,W};char B[W*W],K[W*W],I[W];
t(x,d,s){for(P=0;B[x];x*=x!=*Q)s-=K[Q[P++]=x]-1,
d=(54202126527627840ll>>2*(d*7+B[x+=D[d]]%8))&3;return x?0:s;}
m(x){int c=K[x],u=B[x-W],U=u&7,l=B[x-1],L=l&7,r=0,
i=U!=3&U!=4&L!=2&L!=4,o=(39>>U)&1?57:70;o&=(52>>L)&1?42:85;
if(x/W>Y+1){for(;P--;)printf("%d %d ",Q[P]%W-1,Q[P]/W-1);exit(0);}
if(u>7)o&=U>4?~64:~6;if(l>7)o&=L>4?~32:~10;
for(o&=c?c>1?c>2?(r=8*i,96):(r=8,i*30):~0:1;o;r++,o/=2)
if(o&1)if(B[x]=r,r%8!=1||!t(x,0,T))m(x+1);B[x]=0;}
main(){for(;gets(I);Y++)for(X=0;I[X];X++)
T+=(K[X+1+Y*W+W]=I[X]/36)-1;m(W);}

Teste mich .

Hier ist ein schwierigerer Testfall:

.b.....b.b.......b..
.....w.....b.w....w.
....w.........w.....
..bb.....w.w.b....b.
.w.....b..b......w..
.....b..............
.b..........b.b..bw.
....w....w....b...w.
.......bb...b...w...
..b.......w.........
....b.w.....w.b...b.
w...b...w..b.w.w....
b.w....w............
...b.w......b..b...b
w......w.b.ww.......
.b....b..........b..
....b....w.bb.w...w.
w..b......w...b.....
b.....w.........w...
...b....w..w..b...w.
...................b
.b..w..bb.b..b..w...
........w......b....
b....w......b..b.b..
...b..bb.w.w........
...b.......w......w.
w...w.b.w.....b....b
............w..ww...
..b.b..b....b.......
....b.........w...b.
.ww.......b.w.w.....
b.....w..w.w...b....
....ww..b.b.w....w.w
.............bb..w..
.b....w.b.b........w
....bw..........b...

Ich hatte das Glück, dass mein Code die Lösung ziemlich früh im Lauf findet (<5 Minuten), aber die vollständige Suche dauert viel länger (67 Minuten).

20x36

nutki
quelle
s / Brute Force ist ziemlich schnell / C ist ziemlich schnell /
kirbyfan64sos
9

Python - 1669

Immer noch ziemlich lang, aber schnell genug, um das letzte Beispiel in weniger als einer Sekunde auf meinem Computer auszuführen. Es ist wahrscheinlich möglich, auf Kosten der Geschwindigkeit kürzer zu machen, aber im Moment ist es ziemlich gleichbedeutend mit dem ungolfed Code.

Beispielausgabe für letzten Testfall:

0 11 1 11 2 11 3 11 4 11 4 10 3 10 2 10 1 10 1 9 2 9 3 9 4 9 4 8 3 8 3 7 4 7 5 7 5 6 5 5 6 5 6 6 6 7 7 7 8 7 8 8 7 8 6 8 5 8 5 9 5 10 5 11 6 11 6 10 6 9 7 9 8 9 8 10 7 10 7 11 8 11 9 11 9 10 9 9 10 9 10 10 10 11 11 11 11 10 11 9 11 8 11 7 10 7 10 8 9 8 9 7 9 6 10 6 11 6 11 5 11 4 11 3 10 3 9 3 9 4 9 5 8 5 8 4 8 3 8 2 8 1 9 1 10 1 10 0 9 0 8 0 7 0 7 1 7 2 6 2 5 2 5 1 6 1 6 0 5 0 4 0 3 0 2 0 2 1 3 1 4 1 4 2 4 3 5 3 6 3 7 3 7 4 6 4 5 4 4 4 4 5 4 6 3 6 3 5 3 4 3 3 3 2 2 2 2 3 1 3 1 2 1 1 1 0 0 0 0 1 0 2 0 3 0 4 0 5 0 6 1 6 1 5 1 4 2 4 2 5 2 6 2 7 1 7 1 8 0 8 0 9 0 10

Bildbeschreibung hier eingeben

Code:

I=raw_input().split('\n');X=len(I[0]);Y=len(I);R=range
def S(g=0,c=0,x=0,y=0):
    if y>=Y:return 0
    if g==0:g=[[-1]*X for i in R(Y)];c=[[-1]*X for i in R(Y)]
    o={'.':set(R(7)),'w':{1,2},'b':{3,4,5,6}}[I[y][x]].copy()
    o&={0,1,3,4}if y<1 or g[y-1][x]in[0,1,5,6]else{2,5,6}
    o&={0,2,4,5}if x<1 or g[y][x-1]in[0,2,3,6]else{1,3,6}
    if y>Y-2:o&={0,1,5,6}
    if x>X-2:o&={0,2,3,6}
    if y>0 and g[y-1][x]in[2,3,4]:
        if'b'==I[y][x]and g[y-1][x]!=2:return 0
        if'b'==I[y-1][x]:o&={2}
        elif'w'==I[y-1][x]and g[y-2][x]==2:o&={5,6}
    if x>0 and g[y][x-1]in[1,4,5]:
        if'b'==I[y][x]and g[y][x-1]!=1:return 0
        if'b'==I[y][x-1]:o&={1}
        elif'w'==I[y][x-1]and g[y][x-2]==1:o&={3,6}
    h=[r[:]for r in c]
    if y>0 and g[y-1][x]in[2,3,4]:
        if x>0 and g[y][x-1]in[1,4,5]:
            if c[y-1][x]==c[y][x-1]:
                if(6 not in o)+any(any(i!=c[y-1][x]and i!=-1 for i in r)for r in c)+any(I[v][u]!='.'and(v>y)+(u>x)for v in R(y,Y)for u in R(X)):return 0
                g[y][x]=6
                for v in R(y,Y):
                    for u in R(X):
                        if v!=y or u>x:g[v][u]=0
                for y in R(Y):
                    for x in R(X):
                        if g[y][x]>0:break
                f=[];d=-1;u,v=p,q=x,y
                while(u,v)!=(p,q)or-1==d:f+=[u,v];d=([0,{0,2},{1,3},{2,3},{0,3},{0,1},{1,2}][g[v][u]]-{(d+2)%4}).pop();i,j={0:(u+1,v),1:(u,v-1),2:(u-1,v),3:(u,v+1)}[d];u,v=i,j
                return f
            else:
                for v in R(y+1):
                    for u in R(X):
                        if h[v][u]==c[y][x-1]:h[v][u]=c[y-1][x]
                h[y][x]=c[y-1][x]
        else:h[y][x]=c[y-1][x]
    elif x>0 and g[y][x-1]in[1,4,5]:h[y][x]=c[y][x-1]
    else:h[y][x]=max(max(r)for r in c)+1
    for n in sorted(list(o))[::-1]:
        if n==0:h[y][x]=-1
        if x>X-2:i,j=0,y+1
        else:i,j=x+1,y
        g[y][x]=n;r=S(g,h,i,j)
        if r!=0:return r
    return 0
for i in S():print i,

Ungolfed:

class Grid:
    def __init__(self,input):
        self.input = input.split('\n')
        self.x = len(self.input[0])
        self.y = len(self.input)
        self.options = {'.':{0,1,2,3,4,5,6},'w':{1,2},'b':{3,4,5,6}}

    def convert(self,grid):
        directions = [None,{0,2},{1,3},{2,3},{0,3},{0,1},{1,2}]

        for y in range(self.y):
            for x in range(self.x):
                if grid[y][x] != 0:
                    break

        chain = []
        start_pos = (x,y)
        dir = -1
        pos = start_pos
        while dir == -1 or pos != start_pos:
            chain.extend(pos)
            x,y = pos
            next_dir = (directions[grid[y][x]]-{(dir+2)%4}).pop()
            if next_dir == 0: nx,ny = x+1,y
            elif next_dir == 1: nx,ny = x,y-1
            elif next_dir == 2: nx,ny = x-1,y
            elif next_dir == 3: nx,ny = x,y+1
            dir = next_dir
            pos = (nx,ny)

        return chain

    def solve(self,grid=None,chain_ids=None,pos=(0,0)):
        x,y = pos
        if y >= self.y:
            return None

        if grid is None:
            grid = [[-1]*self.x for i in range(self.y)]
        if chain_ids is None:
            chain_ids = [[-1]*self.x for i in range(self.y)]

        options = self.options[self.input[y][x]].copy()
        if y == 0 or grid[y-1][x] in [0,1,5,6]:
            options &= {0,1,3,4}
        else:
            options &= {2,5,6}
        if y == self.y-1:
            options &= {0,1,5,6}

        if x == 0 or grid[y][x-1] in [0,2,3,6]:
            options &= {0,2,4,5}
        else:
            options &= {1,3,6}
        if x == self.x-1:
            options &= {0,2,3,6}

        if y != 0 and grid[y-1][x] in [2,3,4]:
            if self.input[y][x] == 'b' and grid[y-1][x] != 2:
                return None
            if self.input[y-1][x] == 'b':
                options &= {2}
            elif self.input[y-1][x] == 'w':
                if grid[y-2][x] == 2:
                    options &= {5,6}
        if x != 0 and grid[y][x-1] in [1,4,5]:
            if self.input[y][x] == 'b' and grid[y][x-1] != 1:
                return None
            if self.input[y][x-1] == 'b':
                options &= {1}
            elif self.input[y][x-1] == 'w':
                if grid[y][x-2] == 1:
                    options &= {3,6}


        new_chain_ids = [[i for i in row] for row in chain_ids]
        if y != 0 and grid[y-1][x] in [2,3,4]:
            if x != 0 and grid[y][x-1] in [1,4,5]:

                if chain_ids[y-1][x] == chain_ids[y][x-1]:
                    if 6 not in options:
                        return None

                    if any(any(i != chain_ids[y-1][x] and i != -1 for i in row) for row in chain_ids) or \
                    any(self.input[v][u] != '.' and (v!=y or u>x) for v in range(y,self.y) for u in range(self.x)):
                        return None

                    grid[y][x] = 6
                    for v in range(y,self.y):
                        for u in range(self.x):
                            if v != y or u > x: 
                                grid[v][u] = 0

                    return self.convert(grid)

                else:
                    for v in range(y+1):
                        for u in range(self.x):
                            if new_chain_ids[v][u] == chain_ids[y][x-1]:
                                new_chain_ids[v][u] = chain_ids[y-1][x]
                    new_chain_ids[y][x] = chain_ids[y-1][x]

            else:
                new_chain_ids[y][x] = chain_ids[y-1][x]
        elif x != 0 and grid[y][x-1] in [1,4,5]:
            new_chain_ids[y][x] = chain_ids[y][x-1]
        else:
            new_chain_ids[y][x] = max(max(row) for row in chain_ids)+1

        for n in sorted(list(options),key=lambda n: -n):
            grid[y][x] = n
            if n == 0:
                new_chain_ids[y][x] = -1

            if x == self.x-1:
                nx,ny = 0,y+1
            else:
                nx,ny = x+1,y

            result = self.solve(grid,new_chain_ids,(nx,ny))
            if result is not None:
                return result

input = """

.....w.b.w..
ww..b...b...
.w.....b....
...wbww..b.b
....b.......
w.w.........
..w......b.b
.....bb.....
.....b.....w
w.ww..b.....
...w......w.
b..w.....b..

""".strip()

def print_grid(grid):
    for y,row in enumerate(grid):
        s = ""
        for i in row:
            s += {-1:'xxx',0:'   ',1:'   ',2:' | ',3:'   ',4:'   ',5:' | ',6:' | '}[i]
        s += '\n'
        for x,i in enumerate(row):
            s += {-1:'x%sx',0:' %s ',1:'-%s-',2:' %s ',3:'-%s ',4:' %s-',5:' %s-',6:'-%s '}[i] % input.split('\n')[y][x]
        s += '\n'
        for i in row:
            s += {-1:'xxx',0:'   ',1:'   ',2:' | ',3:' | ',4:' | ',5:'   ',6:'   '}[i]
        s += '\n'
        print s

result = Grid(input).solve()
print result
KSab
quelle
@Geobits Oh, anscheinend habe ich die Regeln nicht sorgfältig genug gelesen. Aktualisierte Antwort mit dem, was ich glaube, ist jetzt richtig
KSab
Der neue Weg sieht für mich gut aus! +1
Geobits
1

Lua, 830 810 765 752 739 729 710

Läuft Board1 und Board2 ganz gut, dauert aber eine Weile auf Board3.

Es könnten 9 Bytes eingespart werden, indem jeder Pfad anstatt nur der erste ausgegeben wird ...

b={}s={0,0,0}R=table.insert Z=unpack for l in io.lines()do w=#l for i=1,w do
c=({b=1,w=2,['.']=3})[l:sub(i,i)]R(b,c)s[c]=s[c]+1 end end h=#b/w for e=0,w*h-1
do function g(p,d,X,t)local function G(I,r)T={Z(t)}a=b[I+1]T[a]=T[a]+1
P={Z(p)}D={Z(d)}R(P,I%w)R(P,I/w-I/w%1)R(D,r)l=#D for U=2,#p,2 do if
I==p[U-1]+w*p[U]then return end end if I==e then if T[1]==s[1]and T[2]==s[2]then
for k=1,l do K=D[k]M=D[(k-2)%l+1]N=D[k%l+1]O=D[(k+1)%l+1]if({K==N or K~=M or
N~=O,K~=N or(K==M and N==O)})[b[1+P[2*k-1]+w*P[2*k]]]then return end end
os.exit(print(table.concat(P,' ')))end else g(P,D,I,T)end end _=X%w<w-1 and
G(X+1,1)_=X/w-X/w%1<h-1 and G(X+w,2)_=X%w>0 and G(X-1,3)_=X/w-X/w%1>0 and
G(X-w,4)end g({},{},e,{0,0,0})end
thenumbernine
quelle