Ordnen Sie einer Zahl eine Liste mit unbestimmter Größe zu!

11

Auf dem Gebiet der Mathematik, die die Unendlichkeit studiert, ist bekannt, dass das kartesische Produkt einer endlichen Menge zählbarer Mengen ebenfalls zählbar ist .

Ihre Aufgabe ist es, zwei Programme zu schreiben, um dies zu implementieren, eines von Liste zu Ganzzahl, eines von Ganzzahl zu Liste.

Ihre Funktion muss bijektiv und deterministisch sein, was bedeutet, dass 1sie immer einer bestimmten Liste und 2immer einer anderen bestimmten Liste usw. zugeordnet wird.

Zuvor haben wir Ganzzahlen einer Liste zugeordnet, die nur aus 0und besteht 1.

Jetzt besteht die Liste jedoch aus nicht negativen Zahlen.

Technische Daten

  • Programm / Funktion, angemessenes Eingabe- / Ausgabeformat.
  • Ob die zugeordneten Ganzzahlen von 1oder von beginnen, 0ist Ihre Wahl, was bedeutet, dass Sie 0nichts zuordnen müssen (aber können).
  • Das leere Array []muss codiert sein.
  • Die Ein- / Ausgabe kann in einer beliebigen Basis erfolgen.
  • Das Teilen von Code zwischen den beiden Funktionen ist zulässig .

Wertung

Das ist . Die niedrigste Punktzahl gewinnt.

Punktzahl ist die Summe der Längen (in Bytes) der beiden Programme / Funktionen.

Undichte Nonne
quelle
"Jetzt wird die Liste jedoch aus nicht negativen Zahlen bestehen."
Undichte Nonne
Also, um klar zu sein, wir kartieren N^inf -> N?
Mego
@Mego N ^ inf ist nicht zählbar. N ^ k wobei k eine beliebige endliche Zahl ist.
Undichte Nonne
Wir haben darüber im Chat diskutiert.
Undichte Nonne
Ob es bei 1 beginnt oder bei 0 beginnt, ist Ihre Wahl. Gilt das für die einzelne Ganzzahl und für die Ganzzahlen in der Liste?
Dennis

Antworten:

10

Gelee , 18 16 Bytes

Liste auf Ganzzahl, 10 8 Bytes

TṪạL;³ÆẸ

Ordnet Listen nicht negativer Ganzzahlen positiven Ganzzahlen zu. Probieren Sie es online aus!

Ganzzahl zur Liste, 8 Bytes

ÆE©Ḣ0ẋ®;

Ordnet positive Ganzzahlen Listen nicht negativer Ganzzahlen zu. Probieren Sie es online aus!

Hintergrund

Sei p 0 , p 1 , p 2 , ⋯ die Folge von Primzahlen in aufsteigender Reihenfolge.

Für jede Liste von nicht-negativen ganzen Zahlen A: = [a 1 , ⋯, ein n ] , bilden wir A bis P 0 z (A) p 1 a 1 ⋯ p n a n , wobei z (A) ist die Anzahl der nachfolgende Nullen von A .

Das Umkehren der obigen Karte ist unkompliziert. Für eine positive ganze Zahl k faktorisieren wir sie eindeutig als das Produkt aufeinanderfolgender Primzahlen n = p 0 α 0 p 1 α 1 ⋯ p n α n , wobei α n > 0 ist , und rekonstruieren dann die Liste als 1 , ⋯, α n ] , wobei α 0 -Nullen angehängt werden.

Wie es funktioniert

Liste in Ganzzahl

TṪạL;³ÆẸ  Main link. Argument: A (list of non-negative integers)

T         Yield all indices of A that correspond to truthy (i.e., non-zero) items.
 Ṫ        Tail; select the last truthy index.
          This returns 0 if the list is empty.
   L      Yield the length of A.
  ạ       Compute the absolute difference of the last truthy index and the length.
          This yields the amount of trailing zeroes of A.
    ;³    Prepend the difference to A.
      ÆẸ  Convert the list from prime exponents to integer.

Ganzzahl zur Liste

ÆE©Ḣ0ẋ®;  Main link. Input: k (positive integer)

ÆE        Convert k to the list of its prime exponents.
  ©       Save the list of prime exponents in the register.
   Ḣ      Head; pop the first exponent.
          If the list is empty, this yields 0.
    0ẋ    Construct a list of that many zeroes.
      ®;  Concatenate the popped list of exponents with the list of zeroes.       

Beispielausgabe

Die ersten hundert positiven ganzen Zahlen werden den folgenden Listen zugeordnet.

  1: []
  2: [0]
  3: [1]
  4: [0, 0]
  5: [0, 1]
  6: [1, 0]
  7: [0, 0, 1]
  8: [0, 0, 0]
  9: [2]
 10: [0, 1, 0]
 11: [0, 0, 0, 1]
 12: [1, 0, 0]
 13: [0, 0, 0, 0, 1]
 14: [0, 0, 1, 0]
 15: [1, 1]
 16: [0, 0, 0, 0]
 17: [0, 0, 0, 0, 0, 1]
 18: [2, 0]
 19: [0, 0, 0, 0, 0, 0, 1]
 20: [0, 1, 0, 0]
 21: [1, 0, 1]
 22: [0, 0, 0, 1, 0]
 23: [0, 0, 0, 0, 0, 0, 0, 1]
 24: [1, 0, 0, 0]
 25: [0, 2]
 26: [0, 0, 0, 0, 1, 0]
 27: [3]
 28: [0, 0, 1, 0, 0]
 29: [0, 0, 0, 0, 0, 0, 0, 0, 1]
 30: [1, 1, 0]
 31: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 32: [0, 0, 0, 0, 0]
 33: [1, 0, 0, 1]
 34: [0, 0, 0, 0, 0, 1, 0]
 35: [0, 1, 1]
 36: [2, 0, 0]
 37: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 38: [0, 0, 0, 0, 0, 0, 1, 0]
 39: [1, 0, 0, 0, 1]
 40: [0, 1, 0, 0, 0]
 41: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 42: [1, 0, 1, 0]
 43: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 44: [0, 0, 0, 1, 0, 0]
 45: [2, 1]
 46: [0, 0, 0, 0, 0, 0, 0, 1, 0]
 47: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 48: [1, 0, 0, 0, 0]
 49: [0, 0, 2]
 50: [0, 2, 0]
 51: [1, 0, 0, 0, 0, 1]
 52: [0, 0, 0, 0, 1, 0, 0]
 53: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 54: [3, 0]
 55: [0, 1, 0, 1]
 56: [0, 0, 1, 0, 0, 0]
 57: [1, 0, 0, 0, 0, 0, 1]
 58: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 59: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 60: [1, 1, 0, 0]
 61: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 62: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 63: [2, 0, 1]
 64: [0, 0, 0, 0, 0, 0]
 65: [0, 1, 0, 0, 1]
 66: [1, 0, 0, 1, 0]
 67: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 68: [0, 0, 0, 0, 0, 1, 0, 0]
 69: [1, 0, 0, 0, 0, 0, 0, 1]
 70: [0, 1, 1, 0]
 71: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 72: [2, 0, 0, 0]
 73: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 74: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 75: [1, 2]
 76: [0, 0, 0, 0, 0, 0, 1, 0, 0]
 77: [0, 0, 1, 1]
 78: [1, 0, 0, 0, 1, 0]
 79: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 80: [0, 1, 0, 0, 0, 0]
 81: [4]
 82: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 83: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 84: [1, 0, 1, 0, 0]
 85: [0, 1, 0, 0, 0, 1]
 86: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 87: [1, 0, 0, 0, 0, 0, 0, 0, 1]
 88: [0, 0, 0, 1, 0, 0, 0]
 89: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 90: [2, 1, 0]
 91: [0, 0, 1, 0, 1]
 92: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
 93: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 94: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
 95: [0, 1, 0, 0, 0, 0, 1]
 96: [1, 0, 0, 0, 0, 0]
 97: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
 98: [0, 0, 2, 0]
 99: [2, 0, 0, 1]
100: [0, 2, 0, 0]
Dennis
quelle
Das ist brilliant.
Undichte Nonne
3

Python 2, 88 Bytes

d=lambda n:map(len,bin(n).split('1')[1:])
e=lambda l:int('1'.join(a*'0'for a in[2]+l),2)

Demo:

>>> for i in range(33):
...     print e(d(i)), d(i)
... 
0 []
1 [0]
2 [1]
3 [0, 0]
4 [2]
5 [1, 0]
6 [0, 1]
7 [0, 0, 0]
8 [3]
9 [2, 0]
10 [1, 1]
11 [1, 0, 0]
12 [0, 2]
13 [0, 1, 0]
14 [0, 0, 1]
15 [0, 0, 0, 0]
16 [4]
17 [3, 0]
18 [2, 1]
19 [2, 0, 0]
20 [1, 2]
21 [1, 1, 0]
22 [1, 0, 1]
23 [1, 0, 0, 0]
24 [0, 3]
25 [0, 2, 0]
26 [0, 1, 1]
27 [0, 1, 0, 0]
28 [0, 0, 2]
29 [0, 0, 1, 0]
30 [0, 0, 0, 1]
31 [0, 0, 0, 0, 0]
32 [5]

Python 2, 130 Bytes

Hier ist eine „effizientere“ Lösung, bei der die Bitlänge der Ausgabe in der Bitlänge der Eingabe eher linear als exponentiell ist.

def d(n):m=-(n^-n);return d(n/m/m)+[n/m%m+m-2]if n else[]
e=lambda l:int('0'+''.join(bin(2*a+5<<len(bin(a+2))-4)[3:]for a in l),2)
Anders Kaseorg
quelle
Verwendet den gleichen Algorithmus wie meine Lösung :)
Leaky Nun
@KennyLau: Ich hatte mir deine Lösung nicht angesehen. Sie sehen ähnlich, aber nicht identisch aus (0s und 1s werden vertauscht). Und Ihre kann die leere Liste nicht umrunden.
Anders Kaseorg
Ich verstehe, danke für die Erinnerung.
Undichte Nonne
Übrigens, ich sagte, die Ausgabe kann in jeder Basis sein.
Undichte Nonne
Da das Teilen von Code zwischen den Funktionen zulässig ist, können Sie emöglicherweise nur die Umkehrung für Folgendes erstellen d: e=lambda l,i=0:l!=d(i)and-~e(l,i+1).
xnor
1

Python 2, 204 202 Bytes

p=lambda x,y:(2*y+1<<x)-1
u=lambda n,x=0:-~n%2<1and u(-~n//2-1,x+1)or[x,n//2]
e=lambda l:l and-~reduce(p,l,len(l)-1)or 0
def d(n):
 if n<1:return[]
 r=[];n,l=u(n-1);exec"n,e=u(n);r=[e]+r;"*l;return[n]+r

Funktioniert durch wiederholtes Anwenden einer Z + x Z + <-> Z + -Bijektion, der die Listenlänge vorangestellt ist.

0: []
1: [0]
2: [1]
3: [0, 0]
4: [2]
5: [0, 0, 0]
6: [1, 0]
7: [0, 0, 0, 0]
8: [3]
9: [0, 0, 0, 0, 0]
10: [1, 0, 0]
11: [0, 0, 0, 0, 0, 0]
12: [0, 1]
13: [0, 0, 0, 0, 0, 0, 0]
14: [1, 0, 0, 0]
15: [0, 0, 0, 0, 0, 0, 0, 0]
16: [4]
17: [0, 0, 0, 0, 0, 0, 0, 0, 0]
18: [1, 0, 0, 0, 0]
19: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
20: [0, 0, 1]
21: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
22: [1, 0, 0, 0, 0, 0]
23: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
24: [2, 0]
25: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
26: [1, 0, 0, 0, 0, 0, 0]
27: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
28: [0, 0, 0, 1]
29: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
30: [1, 0, 0, 0, 0, 0, 0, 0]
31: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
orlp
quelle
Eine Frage: Welche Funktion ist die Funktion "Liste zu Ganzzahl" und welche die Funktion "Ganzzahl zu Liste"?
user48538
@ zyabin101 eist Liste zu Ganzzahl, dist Ganzzahl zu Liste (codieren / decodieren).
Orlp
Ich mag diese Lösung.
Undichte Nonne