Algorithmus für minimalen Begrenzungsrahmen ändern

12

Ich versuche, einen Algorithmus zu erstellen, der dem minimalen Begrenzungsrahmen ähnelt (obwohl er möglicherweise nicht so aussieht). In diesem Fall wird der Winkel als Parameter übergeben und für den Winkel benötige ich das kleinste Rechteck, das alle meine Punkte / Polygone abdeckt. Bisher habe ich mir vorgenommen, den Mittelpunkt meiner Punkte zu finden (Schwerpunktalgorithmus) und daraus zwei parallele Linien mit demselben Winkel wie der Parameterwinkel und zwei weitere Linien senkrecht dazu zu erstellen. Verschieben Sie diese Linien dann mit Iteration nach außen (in entgegengesetzte Richtungen), bis sie alle Punkte enthalten. Es muss auch keine exakte minimale Begrenzungsbox sein, ungefähre Arbeiten (ich denke, würde von der Größe jedes Iterationsschritts abhängen).

Hier ist mein Code soweit. Ich habe bereits alle meine Polygone in eins aufgelöst. Ich nehme dann eine konvexe Hülle, um die Scheitelpunkte zu reduzieren. Ich habe dann alle Eckpunkte in eine Liste gesetzt - nicht sicher, ob das noch hilft ...

a = layer.getFeatures()
for feat in a:
    geom = feat.geometry()
a = geom.convexHull()
vertexId = QgsVertexId()
vertices = []
b = a.constGet().nextVertex(vertexId)
while b[0]:
    vertices.append(b[1])
    b = a.constGet().nextVertex(vertexId)

Anmerkungen: Irgendwann muss ich den Winkel der Box überschreiten. Ich verwende QGIS 3 und muss dies in Python erstellen. Ebene 'Ebene' hat eine Geometrie, das aufgelöste Polygon aller anderen Polygone - möglicherweise ist keine Iteration erforderlich, um darauf zuzugreifen.

Bitte lassen Sie mich wissen, wenn ich weitere Informationen weitergeben soll.

anthonyB
quelle
3
Dies ist eine einfache Aufgabe. Drehen Sie die Scheitelpunkte der konvexen Hülle unter Verwendung der Standardgleichungen stackoverflow.com/questions/20104611/… .
FelixIP

Antworten:

2

Hier ist der vollständige Code. Es enthält zu viele Zeilen (viel mehr als unbedingt benötigt), aber es funktioniert. Jetzt können Sie es reinigen, wenn Sie möchten.

Im Resume berechnet der Algorithmus den maximalen Abstand zwischen parallelen Linien, deren Steigung durch den Rotationsparameter definiert ist, und durchläuft die Punkte. Für jeden Punkt wird eine horizontale und eine vertikale Linie erstellt. Diese Namen sind nur orientativ, da sie an Position 0 definiert sind (Drehung = 0). Für jeden externen Punkt werden also diese 2 möglichen Linien erstellt, und dann wird iterativ das Poligon auf der Grundlage der 4 externen Linien erstellt, oder anders ausgedrückt, wobei der Abstand paralleler Linien maximal ist.

Eine letzte Sache: Es ist dafür gemacht, in QGIS 3.8 mit Gras verwendet zu werden.

Bildbeschreibung hier eingeben

from PyQt5.QtCore import *
from qgis.core import *
from qgis.gui import *
from processing.tools import *
from qgis.utils import iface
import qgis.utils, os, glob, processing, string, time, shutil, ogr

#PARAMETERS AND LAYERS
rotation = 45 #use any value between 0 and <90 #90 would make a mess

layer1 = iface.activeLayer() # Load the layer (from active)
crs = layer1.crs().authid() #get crs

#----------------------------------------------------------------------------------------
#LINE EQUATIONS
''' 
BASIC LINE EQUATIONS
y = ax + b
a = (y2 - y1) / (x2 - x1)
b = y1 - a * x1
Distance = (| a*x1 + b*y1 + c |) / (sqrt( a*a + b*b))# Function to find straight distance betweeen line and point 
'''
# slope from angle
def sfa (a):
    return round(math.tan(math.radians(a)),12) #round to avoid problems with horizontal and vertical

# angle from slope (not used)
def afs (s):
    return (math.atan(s) / math.pi) * 180

# Function to find distance 
def shortest_distance(x1, y1, a, b, c):    
    d = round(abs((a * x1 + b * y1 + c)) / (math.sqrt(a * a + b * b)) , 12)
    return d

# Function to find interception between lines
def cross(a1,b1,a2,b2):
    x = (b2-b1) / (a1-a2)
    y = a1 * x + b1
    return (x,y)

#----------------------------------------------------------------------------------------
# GET LIST OF POINTS TO ITERATE
# Calculate convexhull to reduce the iterations between point
# This avoid calculations on 'internal' points
# process of minimum bounding geometry convexHull
MBG = processing.run("qgis:minimumboundinggeometry", {'INPUT': layer1,'FIELD':None,'TYPE':3,'OUTPUT':'TEMPORARY_OUTPUT'})

# Get vertex of MBG
MBGp = processing.run("native:extractvertices", {'INPUT':MBG['OUTPUT'],'OUTPUT':'TEMPORARY_OUTPUT'})

plist = list(MBGp['OUTPUT'].getFeatures())

lp = list()
for p in plist:
    geom = p.geometry()
    a = geom.asPoint()
    point = (a[0],a[1])
    lp.append(point)

#----------------------------------------------------------------------------------------
# PROCESS
# compare hdist and v dist betweeen each pair of point and get the most distant lines
hdist_max = 0
vdist_max = 0
index = list(range(0,len(lp))) #iteration index
bl = ['ah1','bh1','av1','bv1','ah2','bh2','av2','bv2'] #polygon lines defined by 8 parameters see below

for i in index[:-1]:
    print('i'+str(i))
    for t in index[i+1:]:
        print('t'+str(t))

        x1 = lp[i][0] #; print('x1: {}', x1)
        y1 = lp[i][1] #; print('y1: {}', y1)
        x2 = lp[t][0] #; print('x2: {}', x2)
        y2 = lp[t][1] #; print('y2: {}', y2)

        #h1 equation
        ah1 = sfa(rotation)
        bh1 = y1 - ah1 * x1

        #v1 equation
        av1 = sfa(rotation + 90) #remember that just the horizontal is the reference at 0 rotation
        bv1 = y1 - av1 * x1 

        #h2 equation
        ah2 = sfa(rotation)
        bh2 = y2 - ah2 * x2

        #v2 equation
        av2 = sfa(rotation + 90) #remember that just the horizontal is the reference
        bv2 = y2 - av2 * x2 

        # H dist
        hdist = shortest_distance(x1, y1, ah2, -1, bh2)
        vdist = shortest_distance(x1, y1, av2, -1, bv2)

        if hdist > hdist_max:
            bl[0] = ah1
            bl[1] = bh1
            bl[4] = ah2
            bl[5] = bh2
            hdist_max = hdist #update max hdist
        if vdist > vdist_max:
            bl[2] = av1
            bl[3] = bv1
            bl[6] = av2
            bl[7] = bv2
            vdist_max = vdist #update max vdist

print("Max perpendicular distance betweeen 'horizontal lines' is",hdist_max, ' m')
print("Max perpendicular distance betweeen 'verticallines' is",vdist_max, ' m')

#------------------------------------------------------------------------------------------
# GET 4 COORDS FROM BOUNDINGLINES bl
# using the slope and intercept from boundinglines can we now calculate the 4 corners of the rotated polygon
H1V1 = cross(bl[0],bl[1],bl[2],bl[3]) # H1V1
H1V2 = cross(bl[0],bl[1],bl[6],bl[7]) # H1V2
H2V1 = cross(bl[4],bl[5],bl[2],bl[3]) # H2V1
H2V2 = cross(bl[4],bl[5],bl[6],bl[7]) # H2V2

# SORT POINTS CLOCKWISE AND CREATE QgsPointXY for polygon
clist = [H1V1,H1V2,H2V1,H2V2]
points=[]
points.append(sorted(clist, key=lambda e: (e[1], e[0]))[0]); clist.remove(points[0]) #minX and minY
points.append(sorted(clist, key=lambda e: (e[0], e[1]))[0]); clist.remove(points[1]) #minY and minX
points.append(sorted(clist, key=lambda e: (e[1]), reverse=True)[0]); clist.remove(points[2]) #maxY
points.append(clist[0]) #remaining
p=[]
for i in points:
    p.append(QgsPointXY(i[0],i[1]))
print('Coords of the polygon: ',p)

#------------------------------------------------------------------------------------------
#CREATE ROTATED BOUNDING BOX FROM THESE POINTS
layer = QgsVectorLayer(str('Polygon?crs='+crs), 'polygon' , 'memory')
prov = layer.dataProvider()
feat = QgsFeature()
feat.setGeometry(QgsGeometry.fromPolygonXY([p]))
prov.addFeatures([feat])
layer.updateExtents()
QgsProject.instance().addMapLayers([layer])
César Arquero
quelle