Bitfelder in C #

80

Ich habe eine Struktur, die ich füllen und auf die Festplatte schreiben muss (tatsächlich mehrere).

Ein Beispiel ist:

byte-6    
bit0 - original_or_copy  
bit1 - copyright  
bit2 - data_alignment_indicator  
bit3 - PES_priority  
bit4-bit5 - PES_scrambling control.  
bit6-bit7 - reserved  

In CI kann Folgendes ausgeführt werden:

struct PESHeader  {
    unsigned reserved:2;
    unsigned scrambling_control:2;
    unsigned priority:1;
    unsigned data_alignment_indicator:1;
    unsigned copyright:1;
    unsigned original_or_copy:1;
};

Gibt es eine Möglichkeit, dies in C # zu tun, um mit dem Struktur-Dereferenzierungspunkt-Operator auf die Bits zuzugreifen?

Für ein paar Strukturen kann ich nur eine Bitverschiebung durchführen, die in eine Accessor-Funktion eingebunden ist.

Ich habe viele Strukturen auf diese Weise zu handhaben, daher suche ich nach etwas, das einfacher zu lesen und schneller zu schreiben ist.

rauben
quelle

Antworten:

56

Ich würde wahrscheinlich etwas mithilfe von Attributen zusammenfügen und dann eine Konvertierungsklasse, um entsprechend zugeordnete Strukturen in die Bitfeldprimitive zu konvertieren. Etwas wie...

using System;

namespace BitfieldTest
{
    [global::System.AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
    sealed class BitfieldLengthAttribute : Attribute
    {
        uint length;

        public BitfieldLengthAttribute(uint length)
        {
            this.length = length;
        }

        public uint Length { get { return length; } }
    }

    static class PrimitiveConversion
    {
        public static long ToLong<T>(T t) where T : struct
        {
            long r = 0;
            int offset = 0;

            // For every field suitably attributed with a BitfieldLength
            foreach (System.Reflection.FieldInfo f in t.GetType().GetFields())
            {
                object[] attrs = f.GetCustomAttributes(typeof(BitfieldLengthAttribute), false);
                if (attrs.Length == 1)
                {
                    uint fieldLength  = ((BitfieldLengthAttribute)attrs[0]).Length;

                    // Calculate a bitmask of the desired length
                    long mask = 0;
                    for (int i = 0; i < fieldLength; i++)
                        mask |= 1 << i;

                    r |= ((UInt32)f.GetValue(t) & mask) << offset;

                    offset += (int)fieldLength;
                }
            }

            return r;
        }
    }

    struct PESHeader
    {
        [BitfieldLength(2)]
        public uint reserved;
        [BitfieldLength(2)]
        public uint scrambling_control;
        [BitfieldLength(1)]
        public uint priority;
        [BitfieldLength(1)]
        public uint data_alignment_indicator;
        [BitfieldLength(1)]
        public uint copyright;
        [BitfieldLength(1)]
        public uint original_or_copy;
    };

    public class MainClass
    {
        public static void Main(string[] args)
        {
            PESHeader p = new PESHeader();

            p.reserved = 3;
            p.scrambling_control = 2;
            p.data_alignment_indicator = 1;

            long l = PrimitiveConversion.ToLong(p);


            for (int i = 63; i >= 0; i--)
            {
                Console.Write( ((l & (1l << i)) > 0) ? "1" : "0");
            }

            Console.WriteLine();

            return;
        }
    }
}

Welches produziert die erwarteten ... 000101011. Natürlich erfordert es mehr Fehlerprüfung und eine etwas vernünftigere Eingabe, aber das Konzept ist (glaube ich) solide, wiederverwendbar und ermöglicht es Ihnen, leicht zu wartende Strukturen im Dutzend auszuschalten.

Adamw

Adam Wright
quelle
9
HINWEIS: Gemäß MSDN "gibt die GetFieldsMethode keine Felder in einer bestimmten Reihenfolge zurück, z. B. in alphabetischer Reihenfolge oder in Deklarationsreihenfolge. Ihr Code darf nicht von der Reihenfolge abhängen, in der die Felder zurückgegeben werden, da diese Reihenfolge unterschiedlich ist." Verursacht das hier kein Problem?
Kevin P. Rice
1
Wenn Sie eine IBitfield'Marker'-Schnittstelle erstellen (ohne Mitglieder), können Sie die PrimitiveConversionKlasse für jede implementierte Struktur in Erweiterungsmethoden konvertieren IBitfield. Zum Beispiel : public static long ToLong(this IBitfield obj) {}. Anschließend wird die ToLong()Methode in Intellisense für IBitfieldObjekte angezeigt .
Kevin P. Rice
Können Sie den Prozess mit 'f.SetValue (t, someValue)' umkehren? Ich verwende dies, um Paketklassen in Nachrichtenpuffer für Socket-Übertragungen zu konvertieren. Funktioniert hervorragend, aber ich kann aus irgendeinem Grund keine Daten aus dem Stream mit f.SetValue () zurück in die Struktur lesen. Keine Fehler, funktioniert einfach nicht.
Buzzard51
GetFieldsMöglicherweise aufgrund des Reflexionscaches neu angeordnet, aber das Sortieren nach 'MetadataToken' sollte dieses Problem lösen (das Sie reproduzieren können, indem Sie ein einzelnes Feld abrufen und alle Felder in einer bestimmten Reihenfolge abrufen).
Firda
26

Wenn Sie eine Aufzählung verwenden, können Sie dies tun, aber es wird unangenehm aussehen.

[Flags]
public enum PESHeaderFlags
{
    IsCopy = 1, // implied that if not present, then it is an original
    IsCopyrighted = 2,
    IsDataAligned = 4,
    Priority = 8,
    ScramblingControlType1 = 0,
    ScramblingControlType2 = 16,
    ScramblingControlType3 = 32,
    ScramblingControlType4 = 16+32,
    ScramblingControlFlags = ScramblingControlType1 | ScramblingControlType2 | ... ype4
    etc.
}
Lasse V. Karlsen
quelle
20

Sie möchten StructLayoutAttribute

[StructLayout(LayoutKind.Explicit, Size=1, CharSet=CharSet.Ansi)]
public struct Foo 
{ [FieldOffset(0)]public byte original_or_copy; 
  [FieldOffset(0)]public byte copyright;
  [FieldOffset(0)]public byte data_alignment_indicator; 
  [FieldOffset(0)]public byte PES_priority; 
  [FieldOffset(0)]public byte PES_scrambling_control; 
  [FieldOffset(0)]public byte reserved; 
}

Dies ist wirklich eine Vereinigung, aber Sie können sie als Bitfeld verwenden - Sie müssen sich nur bewusst sein, wo im Byte die Bits für jedes Feld sein sollen. Dienstprogrammfunktionen und / oder Konstanten zu UND gegen können helfen.

const byte _original_or_copy = 1;
const byte _copyright        = 2;

//bool ooo = foo.original_or_copy();
static bool original_or_copy(this Foo foo) 
{ return  (foo.original_or_copy & _original_or_copy)  == original_or_copy;
}    

Es gibt auch LayoutKind.Sequential, mit dem Sie es auf C-Weise tun können.

Mark Cidade
quelle
17

Wie Christophe Lambrechts vorschlug, bietet BitVector32 eine Lösung. Jitted Performance sollte angemessen sein, weiß es aber nicht genau. Hier ist der Code, der diese Lösung veranschaulicht:

public struct rcSpan
{
    //C# Spec 10.4.5.1: The static field variable initializers of a class correspond to a sequence of assignments that are executed in the textual order in which they appear in the class declaration.
    internal static readonly BitVector32.Section sminSection = BitVector32.CreateSection(0x1FFF);
    internal static readonly BitVector32.Section smaxSection = BitVector32.CreateSection(0x1FFF, sminSection);
    internal static readonly BitVector32.Section areaSection = BitVector32.CreateSection(0x3F, smaxSection);

    internal BitVector32 data;

    //public uint smin : 13; 
    public uint smin
    {
        get { return (uint)data[sminSection]; }
        set { data[sminSection] = (int)value; }
    }

    //public uint smax : 13; 
    public uint smax
    {
        get { return (uint)data[smaxSection]; }
        set { data[smaxSection] = (int)value; }
    }

    //public uint area : 6; 
    public uint area
    {
        get { return (uint)data[areaSection]; }
        set { data[areaSection] = (int)value; }
    }
}

Auf diese Weise können Sie viel tun. Sie können es noch besser machen, ohne BitVector32 zu verwenden, indem Sie handgefertigte Accessoren für jedes Feld bereitstellen:

public struct rcSpan2
{
    internal uint data;

    //public uint smin : 13; 
    public uint smin
    {
        get { return data & 0x1FFF; }
        set { data = (data & ~0x1FFFu ) | (value & 0x1FFF); }
    }

    //public uint smax : 13; 
    public uint smax
    {
        get { return (data >> 13) & 0x1FFF; }
        set { data = (data & ~(0x1FFFu << 13)) | (value & 0x1FFF) << 13; }
    }

    //public uint area : 6; 
    public uint area
    {
        get { return (data >> 26) & 0x3F; }
        set { data = (data & ~(0x3F << 26)) | (value & 0x3F) << 26; }
    }
}

Überraschenderweise scheint diese letzte handgemachte Lösung die bequemste, am wenigsten verschlungene und die kürzeste zu sein. Das ist natürlich nur meine persönliche Präferenz.

Zbyl
quelle
8

Eine weitere basiert auf Zbyls Antwort. Dieser ist für mich etwas einfacher zu ändern - ich muss nur sz0, sz1 ... anpassen und außerdem sicherstellen, dass Maske # und loc # in den Set / Get-Blöcken korrekt sind.

In Bezug auf die Leistung sollte es dasselbe sein, da beide in 38 MSIL-Anweisungen aufgelöst wurden. (Konstanten werden zur Kompilierungszeit aufgelöst)

public struct MyStruct
{
    internal uint raw;

    const int sz0 = 4, loc0 = 0,          mask0 = ((1 << sz0) - 1) << loc0;
    const int sz1 = 4, loc1 = loc0 + sz0, mask1 = ((1 << sz1) - 1) << loc1;
    const int sz2 = 4, loc2 = loc1 + sz1, mask2 = ((1 << sz2) - 1) << loc2;
    const int sz3 = 4, loc3 = loc2 + sz2, mask3 = ((1 << sz3) - 1) << loc3;

    public uint Item0
    {
        get { return (uint)(raw & mask0) >> loc0; }
        set { raw = (uint)(raw & ~mask0 | (value << loc0) & mask0); }
    }

    public uint Item1
    {
        get { return (uint)(raw & mask1) >> loc1; }
        set { raw = (uint)(raw & ~mask1 | (value << loc1) & mask1); }
    }

    public uint Item2
    {
        get { return (uint)(raw & mask2) >> loc2; }
        set { raw = (uint)(raw & ~mask2 | (value << loc2) & mask2); }
    }

    public uint Item3
    {
        get { return (uint)((raw & mask3) >> loc3); }
        set { raw = (uint)(raw & ~mask3 | (value << loc3) & mask3); }
    }
}
Sunsetquest
quelle
1
Tolles Setup. Mit Freude wiederverwendet;). Ich habe festgestellt, dass raw=uint.MaxValueich das letzte Element geringfügig ändern musste , wenn das Bitfeld "voll" ist (z. B. beim Einstellen ). Oder vielleicht betrifft es nur die letzte Eigenschaft. Nicht sicher. In Ihrem obigen Beispiel sehen die ItemXEigenschafts-Getter also folgendermaßen aus: get { return (uint)((Raw & Mask3) >> Loc3); }. The setter look like this: set {Raw = (uint) (Raw & ~ Mask3 | (Wert << Loc3) & Mask3); } `Ohne diese Änderung schlägt das Casting für die letzte Eigenschaft fehl.
Spiralis
1
@Spiralis: Danke, dass du das bemerkt hast. Ich habe es wie gesagt aktualisiert und es funktioniert jetzt besser.
Sunsetquest
6

Sie könnten auch die BitVector32und vor allem die verwenden Section struct. Das Beispiel ist sehr gut.

Christophe Lambrechts
quelle
5

Während es eine Klasse ist, BitArrayscheint die Verwendung der Weg zu sein, um das Rad am wenigsten neu zu erfinden. Dies ist die einfachste Option, es sei denn, Sie sind wirklich auf Leistung bedacht. (Indizes können mit dem []Operator referenziert werden.)

Conrad
quelle
3

Eine Flags-Aufzählung kann auch funktionieren, denke ich, wenn Sie sie zu einer Byte-Aufzählung machen:

[Flags] enum PesHeaders : byte { /* ... */ }
Mark Cidade
quelle
2

Ich habe einen geschrieben, teile ihn, kann jemandem helfen:

[global::System.AttributeUsage(AttributeTargets.Field, AllowMultiple = false)]
public sealed class BitInfoAttribute : Attribute {
    byte length;
    public BitInfoAttribute(byte length) {
        this.length = length;
    }
    public byte Length { get { return length; } }
}

public abstract class BitField {

    public void parse<T>(T[] vals) {
        analysis().parse(this, ArrayConverter.convert<T, uint>(vals));
    }

    public byte[] toArray() {
        return ArrayConverter.convert<uint, byte>(analysis().toArray(this));
    }

    public T[] toArray<T>() {
        return ArrayConverter.convert<uint, T>(analysis().toArray(this));
    }

    static Dictionary<Type, BitTypeInfo> bitInfoMap = new Dictionary<Type, BitTypeInfo>();
    private BitTypeInfo analysis() {
        Type type = this.GetType();
        if (!bitInfoMap.ContainsKey(type)) {
            List<BitInfo> infos = new List<BitInfo>();

            byte dataIdx = 0, offset = 0;
            foreach (System.Reflection.FieldInfo f in type.GetFields()) {
                object[] attrs = f.GetCustomAttributes(typeof(BitInfoAttribute), false);
                if (attrs.Length == 1) {
                    byte bitLen = ((BitInfoAttribute)attrs[0]).Length;
                    if (offset + bitLen > 32) {
                        dataIdx++;
                        offset = 0;
                    }
                    infos.Add(new BitInfo(f, bitLen, dataIdx, offset));
                    offset += bitLen;
                }
            }
            bitInfoMap.Add(type, new BitTypeInfo(dataIdx + 1, infos.ToArray()));
        }
        return bitInfoMap[type];
    }
}

class BitTypeInfo {
    public int dataLen { get; private set; }
    public BitInfo[] bitInfos { get; private set; }

    public BitTypeInfo(int _dataLen, BitInfo[] _bitInfos) {
        dataLen = _dataLen;
        bitInfos = _bitInfos;
    }

    public uint[] toArray<T>(T obj) {
        uint[] datas = new uint[dataLen];
        foreach (BitInfo bif in bitInfos) {
            bif.encode(obj, datas);
        }
        return datas;
    }

    public void parse<T>(T obj, uint[] vals) {
        foreach (BitInfo bif in bitInfos) {
            bif.decode(obj, vals);
        }
    }
}

class BitInfo {

    private System.Reflection.FieldInfo field;
    private uint mask;
    private byte idx, offset, shiftA, shiftB;
    private bool isUnsigned = false;

    public BitInfo(System.Reflection.FieldInfo _field, byte _bitLen, byte _idx, byte _offset) {
        field = _field;
        mask = (uint)(((1 << _bitLen) - 1) << _offset);
        idx = _idx;
        offset = _offset;
        shiftA = (byte)(32 - _offset - _bitLen);
        shiftB = (byte)(32 - _bitLen);

        if (_field.FieldType == typeof(bool)
            || _field.FieldType == typeof(byte)
            || _field.FieldType == typeof(char)
            || _field.FieldType == typeof(uint)
            || _field.FieldType == typeof(ulong)
            || _field.FieldType == typeof(ushort)) {
            isUnsigned = true;
        }
    }

    public void encode(Object obj, uint[] datas) {
        if (isUnsigned) {
            uint val = (uint)Convert.ChangeType(field.GetValue(obj), typeof(uint));
            datas[idx] |= ((uint)(val << offset) & mask);
        } else {
            int val = (int)Convert.ChangeType(field.GetValue(obj), typeof(int));
            datas[idx] |= ((uint)(val << offset) & mask);
        }
    }

    public void decode(Object obj, uint[] datas) {
        if (isUnsigned) {
            field.SetValue(obj, Convert.ChangeType((((uint)(datas[idx] & mask)) << shiftA) >> shiftB, field.FieldType));
        } else {
            field.SetValue(obj, Convert.ChangeType((((int)(datas[idx] & mask)) << shiftA) >> shiftB, field.FieldType));
        }
    }
}

public class ArrayConverter {
    public static T[] convert<T>(uint[] val) {
        return convert<uint, T>(val);
    }

    public static T1[] convert<T0, T1>(T0[] val) {
        T1[] rt = null;
        // type is same or length is same
        // refer to http://stackoverflow.com/questions/25759878/convert-byte-to-sbyte
        if (typeof(T0) == typeof(T1)) { 
            rt = (T1[])(Array)val;
        } else {
            int len = Buffer.ByteLength(val);
            int w = typeWidth<T1>();
            if (w == 1) { // bool
                rt = new T1[len * 8];
            } else if (w == 8) {
                rt = new T1[len];
            } else { // w > 8
                int nn = w / 8;
                int len2 = (len / nn) + ((len % nn) > 0 ? 1 : 0);
                rt = new T1[len2];
            }

            Buffer.BlockCopy(val, 0, rt, 0, len);
        }
        return rt;
    }

    public static string toBinary<T>(T[] vals) {
        StringBuilder sb = new StringBuilder();
        int width = typeWidth<T>();
        int len = Buffer.ByteLength(vals);
        for (int i = len-1; i >=0; i--) {
            sb.Append(Convert.ToString(Buffer.GetByte(vals, i), 2).PadLeft(8, '0')).Append(" ");
        }
        return sb.ToString();
    }

    private static int typeWidth<T>() {
        int rt = 0;
        if (typeof(T) == typeof(bool)) { // x
            rt = 1;
        } else if (typeof(T) == typeof(byte)) { // x
            rt = 8;
        } else if (typeof(T) == typeof(sbyte)) {
            rt = 8;
        } else if (typeof(T) == typeof(ushort)) { // x
            rt = 16;
        } else if (typeof(T) == typeof(short)) {
            rt = 16;
        } else if (typeof(T) == typeof(char)) {
            rt = 16;
        } else if (typeof(T) == typeof(uint)) { // x
            rt = 32;
        } else if (typeof(T) == typeof(int)) {
            rt = 32;
        } else if (typeof(T) == typeof(float)) {
            rt = 32;
        } else if (typeof(T) == typeof(ulong)) { // x
            rt = 64;
        } else if (typeof(T) == typeof(long)) {
            rt = 64;
        } else if (typeof(T) == typeof(double)) {
            rt = 64;
        } else {
            throw new Exception("Unsupport type : " + typeof(T).Name);
        }
        return rt;
    }
}

und die Verwendung:

class MyTest01 : BitField {
    [BitInfo(3)]
    public bool d0;
    [BitInfo(3)]
    public short d1;
    [BitInfo(3)]
    public int d2;
    [BitInfo(3)]
    public int d3;
    [BitInfo(3)]
    public int d4;
    [BitInfo(3)]
    public int d5;

    public MyTest01(bool _d0, short _d1, int _d2, int _d3, int _d4, int _d5) {
        d0 = _d0;
        d1 = _d1;
        d2 = _d2;
        d3 = _d3;
        d4 = _d4;
        d5 = _d5;
    }

    public MyTest01(byte[] datas) {
        parse(datas);
    }

    public new string ToString() {
        return string.Format("d0: {0}, d1: {1}, d2: {2}, d3: {3}, d4: {4}, d5: {5} \r\nbinary => {6}",
            d0, d1, d2, d3, d4, d5, ArrayConverter.toBinary(toArray()));
    }
};

class MyTest02 : BitField {
    [BitInfo(5)]
    public bool val0;
    [BitInfo(5)]
    public byte val1;
    [BitInfo(15)]
    public uint val2;
    [BitInfo(15)]
    public float val3;
    [BitInfo(15)]
    public int val4;
    [BitInfo(15)]
    public int val5;
    [BitInfo(15)]
    public int val6;

    public MyTest02(bool v0, byte v1, uint v2, float v3, int v4, int v5, int v6) {
        val0 = v0;
        val1 = v1;
        val2 = v2;
        val3 = v3;
        val4 = v4;
        val5 = v5;
        val6 = v6;
    }

    public MyTest02(byte[] datas) {
        parse(datas);
    }

    public new string ToString() {
        return string.Format("val0: {0}, val1: {1}, val2: {2}, val3: {3}, val4: {4}, val5: {5}, val6: {6}\r\nbinary => {7}",
            val0, val1, val2, val3, val4, val5, val6, ArrayConverter.toBinary(toArray()));
    }
}

public class MainClass {

    public static void Main(string[] args) {
        MyTest01 p = new MyTest01(false, 1, 2, 3, -1, -2);
        Debug.Log("P:: " + p.ToString());
        MyTest01 p2 = new MyTest01(p.toArray());
        Debug.Log("P2:: " + p2.ToString());

        MyTest02 t = new MyTest02(true, 1, 12, -1.3f, 4, -5, 100);
        Debug.Log("t:: " + t.ToString());
        MyTest02 t2 = new MyTest02(t.toArray());
        Debug.Log("t:: " + t.ToString());

        Console.Read();
        return;
    }
}
stalendp
quelle
2

Ich fühle mich mit diesen Hilfsfunktionen sehr wohl:

uint SetBits(uint word, uint value, int pos, int size)
{
    uint mask = ((((uint)1) << size) - 1) << pos;
    word &= ~mask; //resettiamo le posizioni
    word |= (value << pos) & mask;
    return word;
}

uint ReadBits(uint word, int pos, int size)
{
    uint mask = ((((uint)1) << size) - 1) << pos;
    return (word & mask) >> pos;
}

dann:

uint the_word;

public uint Itemx
{
    get { return ReadBits(the_word, 5, 2); }
    set { the_word = SetBits(the_word, value, 5, 2) }
}
Vito Marolda
quelle
Einfach und handlich. Das ist das, was ich benötige. Danke :)
Prihex