Ich versuche, meine RDD mit Off-Heap-Speicher auf Spark 1.4.0 und Tachyon 0.6.4 so zu halten:
val a = sqlContext.parquetFile("a1.parquet")
a.persist(org.apache.spark.storage.StorageLevel.OFF_HEAP)
a.count()
Danach bekomme ich folgende Ausnahme.
Irgendwelche Ideen dazu?
15/06/16 10:14:53 INFO : Tachyon client (version 0.6.4) is trying to connect master @ localhost/127.0.0.1:19998
15/06/16 10:14:53 INFO : User registered at the master localhost/127.0.0.1:19998 got UserId 3
15/06/16 10:14:53 INFO TachyonBlockManager: Created tachyon directory at /tmp_spark_tachyon/spark-6b2512ab-7bb8-47ca-b6e2-8023d3d7f7dc/driver/spark-tachyon-20150616101453-ded3
15/06/16 10:14:53 INFO BlockManagerInfo: Added rdd_10_3 on ExternalBlockStore on localhost:33548 (size: 0.0 B)
15/06/16 10:14:53 INFO BlockManagerInfo: Added rdd_10_1 on ExternalBlockStore on localhost:33548 (size: 0.0 B)
15/06/16 10:14:53 ERROR TransportRequestHandler: Error while invoking RpcHandler#receive() on RPC id 5710423667942934352
org.apache.spark.storage.BlockNotFoundException: Block rdd_10_3 not found
at org.apache.spark.storage.BlockManager.getBlockData(BlockManager.scala:306)
at org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)
at org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
at org.apache.spark.network.netty.NettyBlockRpcServer.receive(NettyBlockRpcServer.scala:57)
at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:114)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:87)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:101)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:51)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:319)
at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:254)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:333)
Ich habe das auch mit der Textdatei versucht und konnte sie in Tachyon beibehalten. Das Problem besteht darin, dass der ursprünglich aus Parkett gelesene DataFrame beibehalten wird.
apache-spark
apache-spark-sql
alluxio
Smikesh
quelle
quelle
Antworten:
Es scheint einen verwandten Fehlerbericht zu geben: https://issues.apache.org/jira/browse/SPARK-10314
Da es eine Pull-Anfrage dafür zu geben scheint, besteht möglicherweise die Möglichkeit, bald eine Lösung dafür zu finden.
Aus diesem Thread, https://groups.google.com/forum/#!topic/tachyon-users/xb8zwqIjIa4 , geht hervor, dass Spark den TRY_CACHE-Modus verwendet, um in Tachyon zu schreiben, sodass die Daten verloren zu gehen scheinen, wenn sie aus dem Cache entfernt werden .
quelle
Dieses Problem ist jetzt behoben. Ich kann dies jetzt mit Spark 1.5 und Tachyon 0.7 bestätigen
quelle