Programmgesteuertes Lösen von „Wem gehört das Zebra“?

128

Bearbeiten: Dieses Puzzle ist auch als "Einsteins Rätsel" bekannt.

The Who besitzt das Zebra (Sie können die Online-Version hier ausprobieren ) ist ein Beispiel für ein klassisches Puzzleset, und ich wette, dass die meisten Leute bei Stack Overflow es mit Stift und Papier lösen können. Aber wie würde eine programmatische Lösung aussehen?

Basierend auf den unten aufgeführten Hinweisen ...

  • Es gibt fünf Häuser.
  • Jedes Haus hat seine eigene Farbe.
  • Alle Hausbesitzer sind unterschiedlicher Nationalität.
  • Sie haben alle verschiedene Haustiere.
  • Sie alle trinken verschiedene Getränke.
  • Sie alle rauchen verschiedene Zigaretten.
  • Der Engländer lebt im roten Haus.
  • Der Schwede hat einen Hund.
  • Der Däne trinkt Tee.
  • Das Gewächshaus befindet sich auf der linken Seite des Weißen Hauses.
  • Sie trinken Kaffee im Gewächshaus.
  • Der Mann, der Pall Mall raucht, hat Vögel.
  • Im gelben Haus rauchen sie Dunhill.
  • Im mittleren Haus trinken sie Milch.
  • Der Norweger lebt im ersten Haus.
  • Der Mann, der Blend raucht, lebt mit Katzen im Haus neben dem Haus.
  • In dem Haus neben dem Haus, in dem sie ein Pferd haben, rauchen sie Dunhill.
  • Der Mann, der Blue Master raucht, trinkt Bier.
  • Der Deutsche raucht Prince.
  • Der Norweger wohnt neben dem blauen Haus.
  • Sie trinken Wasser im Haus neben dem Haus, in dem sie Blend rauchen.

... wem gehört das Zebra?

activout.se
quelle
37
Zebras wurden in der Liste der Informationen (Hinweise) nie erwähnt, daher ist die Spezifikation unter angegeben. Als Auftragnehmer kann ich dann die Existenz von Zebras in der Lösung ignorieren. Meine Antwort lautet einfach, dass niemand das Zebra besitzt, weil es keine Zebras gibt. : D
Peter M
10
@ Peter M: Die Antwort war 42.
Meistens harmlos
2
@Peter M: Ja, die Tatsache, dass es ein Zebra gibt, ist auch ein Hinweis, aber es ist nicht als solches aufgeführt.
activout.se
1
Klingt nach einem guten Anwendungsfall für einen SAT-Solver.
Asmeurer

Antworten:

162

Hier ist eine Lösung in Python, die auf Constraint-Programmierung basiert:

from constraint import AllDifferentConstraint, InSetConstraint, Problem

# variables
colors        = "blue red green white yellow".split()
nationalities = "Norwegian German Dane Swede English".split()
pets          = "birds dog cats horse zebra".split()
drinks        = "tea coffee milk beer water".split()
cigarettes    = "Blend, Prince, Blue Master, Dunhill, Pall Mall".split(", ")

# There are five houses.
minn, maxn = 1, 5
problem = Problem()
# value of a variable is the number of a house with corresponding property
variables = colors + nationalities + pets + drinks + cigarettes
problem.addVariables(variables, range(minn, maxn+1))

# Each house has its own unique color.
# All house owners are of different nationalities.
# They all have different pets.
# They all drink different drinks.
# They all smoke different cigarettes.
for vars_ in (colors, nationalities, pets, drinks, cigarettes):
    problem.addConstraint(AllDifferentConstraint(), vars_)

# In the middle house they drink milk.
#NOTE: interpret "middle" in a numerical sense (not geometrical)
problem.addConstraint(InSetConstraint([(minn + maxn) // 2]), ["milk"])
# The Norwegian lives in the first house.
#NOTE: interpret "the first" as a house number
problem.addConstraint(InSetConstraint([minn]), ["Norwegian"])
# The green house is on the left side of the white house.
#XXX: what is "the left side"? (linear, circular, two sides, 2D house arrangment)
#NOTE: interpret it as 'green house number' + 1 == 'white house number'
problem.addConstraint(lambda a,b: a+1 == b, ["green", "white"])

def add_constraints(constraint, statements, variables=variables, problem=problem):
    for stmt in (line for line in statements if line.strip()):
        problem.addConstraint(constraint, [v for v in variables if v in stmt])

and_statements = """
They drink coffee in the green house.
The man who smokes Pall Mall has birds.
The English man lives in the red house.
The Dane drinks tea.
In the yellow house they smoke Dunhill.
The man who smokes Blue Master drinks beer.
The German smokes Prince.
The Swede has a dog.
""".split("\n")
add_constraints(lambda a,b: a == b, and_statements)

nextto_statements = """
The man who smokes Blend lives in the house next to the house with cats.
In the house next to the house where they have a horse, they smoke Dunhill.
The Norwegian lives next to the blue house.
They drink water in the house next to the house where they smoke Blend.
""".split("\n")
#XXX: what is "next to"? (linear, circular, two sides, 2D house arrangment)
add_constraints(lambda a,b: abs(a - b) == 1, nextto_statements)

def solve(variables=variables, problem=problem):
    from itertools  import groupby
    from operator   import itemgetter

    # find & print solutions
    for solution in problem.getSolutionIter():
        for key, group in groupby(sorted(solution.iteritems(), key=itemgetter(1)), key=itemgetter(1)):
            print key, 
            for v in sorted(dict(group).keys(), key=variables.index):
                print v.ljust(9),
            print

if __name__ == '__main__':
    solve()

Ausgabe:

1 yellow    Norwegian cats      water     Dunhill  
2 blue      Dane      horse     tea       Blend    
3 red       English   birds     milk      Pall Mall
4 green     German    zebra     coffee    Prince   
5 white     Swede     dog       beer      Blue Master

Es dauert 0,6 Sekunden (CPU 1,5 GHz), um die Lösung zu finden.
Die Antwort lautet "Deutsch besitzt Zebra".


So installieren Sie das constraintModul über pip: pip Install Python-Constraint

So installieren Sie manuell:

jfs
quelle
3
Ich würde das nicht falsch nennen. Die einzige Einschränkung, gegen die verstoßen wird, ist, dass das Gewächshaus nicht vom Weißen Haus übrig bleibt. Dies liegt jedoch an der Art und Weise, wie Sie diese Einschränkung definiert haben und die leicht behoben werden kann. Der Link in der Frage ermöglicht sogar Ihre Lösung angesichts der düsteren Definition von "links von".
Mercator
4
@LFSR Consulting: '//' ist immer eine ganzzahlige Division: '3 // 2 == 1'. '/' könnte eine Float-Division '3/2 == 1.5' sein (in Python 3.0 oder in Gegenwart von 'from Future Import Division') oder eine Integer-Division (wie in C) '3/2 == 1' on alte Python-Version ohne 'aus zukünftiger Importabteilung'.
JFS
4
Dies ist das erste Einschränkungsprogramm, das ich mir angesehen habe. Wie viele betonten, ist Ihre Python-Implementierung beeindruckend. Es ist wirklich niedlich, wie Sie es vermieden haben, die Einschränkungen mithilfe von add_constraints (), and_statements und nextto_statements von Hand zu codieren.
Rpattabi
1
Gibt es einen Grund, dies nicht zu pip install python-constrainttun? Ich habe das erst vor einem Moment getan und es scheint die erwartete Ausgabe zu geben.
Ben Burns
1
@ BenBurns: kein Grund. Die Antwort wurde im Jahr 2008 geschrieben. Wenn Sie sie getestet haben und das gleiche Ergebnis erzielen, können Sie die Installationsanweisungen und die entsprechenden Links zu den Dokumenten aktualisieren (die wesentlichen Aspekte der Antwort werden dadurch nicht geändert - Sie sind frei um es zu bearbeiten).
JFS
46

In Prolog können wir die Domäne instanziieren, indem wir Elemente aus ihr auswählen :) ( aus Effizienzgründen gegenseitig ausschließende Entscheidungen treffen ). Mit SWI-Prolog,

select([A|As],S):- select(A,S,S1),select(As,S1).
select([],_). 

left_of(A,B,C):- append(_,[A,B|_],C).  
next_to(A,B,C):- left_of(A,B,C) ; left_of(B,A,C).

zebra(Owns, HS):-     % house: color,nation,pet,drink,smokes
  HS   = [ h(_,norwegian,_,_,_),    h(blue,_,_,_,_),   h(_,_,_,milk,_), _, _], 
  select([ h(red,brit,_,_,_),       h(_,swede,dog,_,_), 
           h(_,dane,_,tea,_),       h(_,german,_,_,prince)], HS),
  select([ h(_,_,birds,_,pallmall), h(yellow,_,_,_,dunhill),
           h(_,_,_,beer,bluemaster)],                        HS), 
  left_of( h(green,_,_,coffee,_),   h(white,_,_,_,_),        HS),
  next_to( h(_,_,_,_,dunhill),      h(_,_,horse,_,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,cats, _,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,_,water,_),        HS),
  member(  h(_,Owns,zebra,_,_),                              HS).

Läuft ganz sofort:

?- time( (zebra(Who,HS), writeln(Who), nl, maplist(writeln,HS), nl, false 
          ; writeln('no more solutions!') )).
german

h( yellow, norwegian, cats,   water,  dunhill   )
h( blue,   dane,      horse,  tea,    blend     )
h( red,    brit,      birds,  milk,   pallmall  )
h( green,  german,    zebra,  coffee, prince    )     % formatted by hand
h( white,  swede,     dog,    beer,   bluemaster)

no more solutions!
% 1,706 inferences, 0.000 CPU in 0.070 seconds (0% CPU, Infinite Lips)
true.
Will Ness
quelle
16

Ein Poster erwähnte bereits, dass Prolog eine mögliche Lösung ist. Dies ist wahr und es ist die Lösung, die ich verwenden würde. Allgemeiner ausgedrückt ist dies ein perfektes Problem für ein automatisiertes Inferenzsystem. Prolog ist eine logische Programmiersprache (und ein zugehöriger Interpreter), die ein solches System bilden. Grundsätzlich können Fakten aus Aussagen geschlossen werden, die mit First Order Logic gemacht wurden . FOL ist im Grunde eine fortgeschrittenere Form der Aussagenlogik. Wenn Sie sich entscheiden, Prolog nicht zu verwenden, können Sie ein ähnliches System Ihrer eigenen Kreation verwenden, das eine Technik wie modus ponens verwendet , um die Schlussfolgerungen zu ziehen.

Sie müssen natürlich einige Regeln für Zebras hinzufügen, da diese nirgendwo erwähnt werden ... Ich glaube, die Absicht ist, dass Sie die anderen 4 Haustiere herausfinden und daraus schließen können, dass das letzte das Zebra ist? Sie sollten Regeln hinzufügen, die besagen, dass ein Zebra eines der Haustiere ist und jedes Haus nur ein Haustier haben kann. Diese Art von "gesundem Menschenverstand" -Wissen in ein Inferenzsystem zu bringen, ist die größte Hürde, um die Technik als echte KI zu verwenden. Es gibt einige Forschungsprojekte wie Cyc, die versuchen, dieses allgemeine Wissen durch rohe Gewalt zu vermitteln. Sie haben eine interessante Menge an Erfolg gehabt.

rmeador
quelle
Guter Punkt zu den Regeln des "gesunden Menschenverstandes". Ich erinnere mich, dass ich mich vor Jahren sehr mit diesem Satz beschäftigt habe, als ich den Ausdruck " das Haus neben dem Haus" interpretierte - bedeutet das, dass es nur einen gibt? Es ist nicht offensichtlich.
Chris
Dude Cyc ist seit Jahrzehnten in der Entwicklung ohne irgendeine revolutionäre Methode. Ein bisschen traurig, wäre schön zu sehen, wie sich der Brute-Force-Ansatz gegen assoziative Modelle durchsetzt.
Josh
Wir haben CLIPS an der Uni verwendet, um diese Art von Informationen in unserem KI-Kurs abzuleiten.
Josh Smeaton
15

SWI-Prolog kompatibel:

% NOTE - This may or may not be more efficent. A bit verbose, though.
left_side(L, R, [L, R, _, _, _]).
left_side(L, R, [_, L, R, _, _]).
left_side(L, R, [_, _, L, R, _]).
left_side(L, R, [_, _, _, L, R]).

next_to(X, Y, Street) :- left_side(X, Y, Street).
next_to(X, Y, Street) :- left_side(Y, X, Street).

m(X, Y) :- member(X, Y).

get_zebra(Street, Who) :- 
    Street = [[C1, N1, P1, D1, S1],
              [C2, N2, P2, D2, S2],
              [C3, N3, P3, D3, S3],
              [C4, N4, P4, D4, S4],
              [C5, N5, P5, D5, S5]],
    m([red, english, _, _, _], Street),
    m([_, swede, dog, _, _], Street),
    m([_, dane, _, tea, _], Street),
    left_side([green, _, _, _, _], [white, _, _, _, _], Street),
    m([green, _, _, coffee, _], Street),
    m([_, _, birds, _, pallmall], Street),
    m([yellow, _, _, _, dunhill], Street),
    D3 = milk,
    N1 = norwegian,
    next_to([_, _, _, _, blend], [_, _, cats, _, _], Street),
    next_to([_, _, horse, _, _], [_, _, _, _, dunhill], Street),
    m([_, _, _, beer, bluemaster], Street),
    m([_, german, _, _, prince], Street),
    next_to([_, norwegian, _, _, _], [blue, _, _, _, _], Street),
    next_to([_, _, _, water, _], [_, _, _, _, blend], Street),
    m([_, Who, zebra, _, _], Street).

Beim Dolmetscher:

?- get_zebra(Street, Who).
Street = ...
Who = german
new123456
quelle
13

So würde ich vorgehen. Zuerst würde ich alle bestellten n-Tupel generieren

(housenumber, color, nationality, pet, drink, smoke)

5 ^ 6 davon, 15625, leicht zu handhaben. Dann würde ich die einfachen booleschen Bedingungen herausfiltern. Es gibt zehn von ihnen, und jeder von ihnen würde 8/25 der Bedingungen herausfiltern (1/25 der Bedingungen enthalten einen Schweden mit einem Hund, 16/25 enthalten einen Nicht-Schweden mit einem Nicht-Hund). . Natürlich sind sie nicht unabhängig, aber nach dem Herausfiltern sollten nicht mehr viele übrig sein.

Danach haben Sie ein schönes Grafikproblem. Erstellen Sie ein Diagramm, wobei jeder Knoten eines der verbleibenden n-Tupel darstellt. Fügen Sie dem Diagramm Kanten hinzu, wenn die beiden Enden Duplikate in einer n-Tupel-Position enthalten oder gegen Positionsbeschränkungen verstoßen (es gibt fünf davon). Von dort aus sind Sie fast zu Hause. Durchsuchen Sie das Diagramm nach einem unabhängigen Satz von fünf Knoten (wobei keiner der Knoten durch Kanten verbunden ist). Wenn es nicht zu viele gibt, können Sie möglicherweise alle 5-Tupel von n-Tupeln vollständig generieren und sie einfach erneut filtern.

Dies könnte ein guter Kandidat für Code Golf sein. Jemand kann es wahrscheinlich in einer Zeile mit so etwas wie haskell lösen :)

nachträglicher Gedanke: Der anfängliche Filterdurchlauf kann auch Informationen aus den Positionsbeschränkungen entfernen. Nicht viel (1/25), aber immer noch signifikant.

Chris
quelle
Für Code-Golf könnte eine Lösung die Antwort technisch nur ausdrucken, was sie einem Code-Golf "Hallo Welt" entspricht. Sie müssten das Problem verallgemeinern, um ein interessantes Code-Golf zu erhalten, und dies verallgemeinert nicht trivial.
Adam Rosenfield
Punkt genommen :) Mein Haskell ist ausführlich, aber meine Punktzahl war trotzdem aus dem Park :)
Chris
1
Ich denke, Ihre 5 ^ 6 Einschätzung möglicher Lösungen ist falsch. Ich glaube, die Anzahl der möglichen Kombinationen von 'i'-Elementen innerhalb der' m'-Kategorien sollte (i!) ^ (M-1) sein. Zum Beispiel könnten die fünf Farboptionen 5 angeordnet werden! Wege. Vorausgesetzt, die Kategorie der Hausnummern bleibt in derselben Reihenfolge, könnten auch die anderen 5 Kategorien so angeordnet werden, was bedeutet, dass die möglichen Kombinationen (5!) ^ 5 oder 24.883.200.000 sind; ziemlich viel höher als 15.625, und es ist viel schwieriger, einen Brute-Force-Angriff zu bewältigen.
MidnightLightning
1
15.625 ist basierend auf seiner Lösungsstrategie genau. Wenn Sie jeden möglichen Zustand für alle Variablen zuweisen möchten, wäre er viel größer, aber er entscheidet sich dafür, nur Teilzustände zu erstellen, sie zu entfernen und dann eine andere Technik zu verwenden, um die endgültige Antwort zusammenzustellen.
Nick Larsen
9

Eine weitere Python-Lösung, diesmal mit Pythons PyKE (Python Knowledge Engine). Zugegeben, es ist ausführlicher als die Verwendung von Pythons "Constraint" -Modul in der Lösung von @JFSebastian, aber es bietet einen interessanten Vergleich für alle, die eine Rohwissens-Engine für diese Art von Problem suchen.

clues.kfb

categories( POSITION, 1, 2, 3, 4, 5 )                                   # There are five houses.
categories( HOUSE_COLOR, blue, red, green, white, yellow )              # Each house has its own unique color.
categories( NATIONALITY, Norwegian, German, Dane, Swede, English )      # All house owners are of different nationalities.
categories( PET, birds, dog, cats, horse, zebra )                       # They all have different pets.
categories( DRINK, tea, coffee, milk, beer, water )                     # They all drink different drinks.
categories( SMOKE, Blend, Prince, 'Blue Master', Dunhill, 'Pall Mall' ) # They all smoke different cigarettes.

related( NATIONALITY, English, HOUSE_COLOR, red )    # The English man lives in the red house.
related( NATIONALITY, Swede, PET, dog )              # The Swede has a dog.
related( NATIONALITY, Dane, DRINK, tea )             # The Dane drinks tea.
left_of( HOUSE_COLOR, green, HOUSE_COLOR, white )    # The green house is on the left side of the white house.
related( DRINK, coffee, HOUSE_COLOR, green )         # They drink coffee in the green house.
related( SMOKE, 'Pall Mall', PET, birds )            # The man who smokes Pall Mall has birds.
related( SMOKE, Dunhill, HOUSE_COLOR, yellow )       # In the yellow house they smoke Dunhill.
related( POSITION, 3, DRINK, milk )                  # In the middle house they drink milk.
related( NATIONALITY, Norwegian, POSITION, 1 )       # The Norwegian lives in the first house.
next_to( SMOKE, Blend, PET, cats )                   # The man who smokes Blend lives in the house next to the house with cats.
next_to( SMOKE, Dunhill, PET, horse )                # In the house next to the house where they have a horse, they smoke Dunhill.
related( SMOKE, 'Blue Master', DRINK, beer )         # The man who smokes Blue Master drinks beer.
related( NATIONALITY, German, SMOKE, Prince )        # The German smokes Prince.
next_to( NATIONALITY, Norwegian, HOUSE_COLOR, blue ) # The Norwegian lives next to the blue house.
next_to( DRINK, water, SMOKE, Blend )                # They drink water in the house next to the house where they smoke Blend.

Relations.krb

#############
# Categories

# Foreach set of categories, assert each type
categories
    foreach
        clues.categories($category, $thing1, $thing2, $thing3, $thing4, $thing5)
    assert
        clues.is_category($category, $thing1)
        clues.is_category($category, $thing2)
        clues.is_category($category, $thing3)
        clues.is_category($category, $thing4)
        clues.is_category($category, $thing5)


#########################
# Inverse Relationships

# Foreach A=1, assert 1=A
inverse_relationship_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
    assert
        clues.related($category2, $thing2, $category1, $thing1)

# Foreach A!1, assert 1!A
inverse_relationship_negative
    foreach
        clues.not_related($category1, $thing1, $category2, $thing2)
    assert
        clues.not_related($category2, $thing2, $category1, $thing1)

# Foreach "A beside B", assert "B beside A"
inverse_relationship_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category2, $thing2, $category1, $thing1)


###########################
# Transitive Relationships

# Foreach A=1 and 1=a, assert A=a
transitive_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.related($category1, $thing1, $category3, $thing3)

# Foreach A=1 and 1!a, assert A!a
transitive_negative
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.not_related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.not_related($category1, $thing1, $category3, $thing3)


##########################
# Exclusive Relationships

# Foreach A=1, assert A!2 and A!3 and A!4 and A!5
if_one_related_then_others_unrelated
    foreach
        clues.related($category, $thing, $category_other, $thing_other)
        check unique($category, $category_other)

        clues.is_category($category_other, $thing_not_other)
        check unique($thing, $thing_other, $thing_not_other)
    assert
        clues.not_related($category, $thing, $category_other, $thing_not_other)

# Foreach A!1 and A!2 and A!3 and A!4, assert A=5
if_four_unrelated_then_other_is_related
    foreach
        clues.not_related($category, $thing, $category_other, $thingA)
        clues.not_related($category, $thing, $category_other, $thingB)
        check unique($thingA, $thingB)

        clues.not_related($category, $thing, $category_other, $thingC)
        check unique($thingA, $thingB, $thingC)

        clues.not_related($category, $thing, $category_other, $thingD)
        check unique($thingA, $thingB, $thingC, $thingD)

        # Find the fifth variation of category_other.
        clues.is_category($category_other, $thingE)
        check unique($thingA, $thingB, $thingC, $thingD, $thingE)
    assert
        clues.related($category, $thing, $category_other, $thingE)


###################
# Neighbors: Basic

# Foreach "A left of 1", assert "A beside 1"
expanded_relationship_beside_left
    foreach
        clues.left_of($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category1, $thing1, $category2, $thing2)

# Foreach "A beside 1", assert A!1
unrelated_to_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
        check unique($category1, $category2)
    assert
        clues.not_related($category1, $thing1, $category2, $thing2)


###################################
# Neighbors: Spatial Relationships

# Foreach "A beside B" and "A=(at-edge)", assert "B=(near-edge)"
check_next_to_either_edge
    foreach
        clues.related(POSITION, $position_known, $category, $thing)
        check is_edge($position_known)

        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_other)
        check is_beside($position_known, $position_other)
    assert
        clues.related(POSITION, $position_other, $category_other, $thing_other)

# Foreach "A beside B" and "A!(near-edge)" and "B!(near-edge)", assert "A!(at-edge)"
check_too_close_to_edge
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_edge)
        clues.is_category(POSITION, $position_near_edge)
        check is_edge($position_edge) and is_beside($position_edge, $position_near_edge)

        clues.not_related(POSITION, $position_near_edge, $category, $thing)
        clues.not_related(POSITION, $position_near_edge, $category_other, $thing_other)
    assert
        clues.not_related(POSITION, $position_edge, $category, $thing)

# Foreach "A beside B" and "A!(one-side)", assert "A=(other-side)"
check_next_to_with_other_side_impossible
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.related(POSITION, $position_known, $category_other, $thing_other)
        check not is_edge($position_known)

        clues.not_related($category, $thing, POSITION, $position_one_side)
        check is_beside($position_known, $position_one_side)

        clues.is_category(POSITION, $position_other_side)
        check is_beside($position_known, $position_other_side) \
          and unique($position_known, $position_one_side, $position_other_side)
    assert
        clues.related($category, $thing, POSITION, $position_other_side)

# Foreach "A left of B"...
#   ... and "C=(position1)" and "D=(position2)" and "E=(position3)"
# ~> assert "A=(other-position)" and "B=(other-position)+1"
left_of_and_only_two_slots_remaining
    foreach
        clues.left_of($category_left, $thing_left, $category_right, $thing_right)

        clues.related($category_left, $thing_left_other1, POSITION, $position1)
        clues.related($category_left, $thing_left_other2, POSITION, $position2)
        clues.related($category_left, $thing_left_other3, POSITION, $position3)
        check unique($thing_left, $thing_left_other1, $thing_left_other2, $thing_left_other3)

        clues.related($category_right, $thing_right_other1, POSITION, $position1)
        clues.related($category_right, $thing_right_other2, POSITION, $position2)
        clues.related($category_right, $thing_right_other3, POSITION, $position3)
        check unique($thing_right, $thing_right_other1, $thing_right_other2, $thing_right_other3)

        clues.is_category(POSITION, $position4)
        clues.is_category(POSITION, $position5)

        check is_left_right($position4, $position5) \
          and unique($position1, $position2, $position3, $position4, $position5)
    assert
        clues.related(POSITION, $position4, $category_left, $thing_left)
        clues.related(POSITION, $position5, $category_right, $thing_right)


#########################

fc_extras

    def unique(*args):
        return len(args) == len(set(args))

    def is_edge(pos):
        return (pos == 1) or (pos == 5)

    def is_beside(pos1, pos2):
        diff = (pos1 - pos2)
        return (diff == 1) or (diff == -1)

    def is_left_right(pos_left, pos_right):
        return (pos_right - pos_left == 1)

driver.py (eigentlich größer, aber das ist die Essenz)

from pyke import knowledge_engine

engine = knowledge_engine.engine(__file__)
engine.activate('relations')

try:
    natl = engine.prove_1_goal('clues.related(PET, zebra, NATIONALITY, $nationality)')[0].get('nationality')
except Exception, e:
    natl = "Unknown"
print "== Who owns the zebra? %s ==" % natl

Beispielausgabe:

$ python driver.py

== Who owns the zebra? German ==

#   Color    Nationality    Pet    Drink       Smoke    
=======================================================
1   yellow   Norwegian     cats    water    Dunhill     
2   blue     Dane          horse   tea      Blend       
3   red      English       birds   milk     Pall Mall   
4   green    German        zebra   coffee   Prince      
5   white    Swede         dog     beer     Blue Master 

Calculated in 1.19 seconds.

Quelle: https://github.com/DreadPirateShawn/pyke-who-owns-zebra

DreadPirateShawn
quelle
8

Hier ist ein Auszug aus der vollständigen Lösung mit NSolver , veröffentlicht bei Einstein's Riddle in C # :

// The green house's owner drinks coffee
Post(greenHouse.Eq(coffee));
// The person who smokes Pall Mall rears birds 
Post(pallMall.Eq(birds));
// The owner of the yellow house smokes Dunhill 
Post(yellowHouse.Eq(dunhill));
Larry OBrien
quelle
5
TinyURL muss hier nicht verwendet werden, oder? Sie sehen für mich alle wie Rickrolls aus.
Karl
1
Ich habe das abgelaufene tinyurl behoben.
JFS
@ LamonteCristo Wayback Maschine zur Rettung.
ungefähr
8

Hier ist eine einfache Lösung in CLP (FD) (siehe auch ):

:- use_module(library(clpfd)).

solve(ZebraOwner) :-
    maplist( init_dom(1..5), 
        [[British,  Swedish,  Danish,  Norwegian, German],     % Nationalities
         [Red,      Green,    Blue,    White,     Yellow],     % Houses
         [Tea,      Coffee,   Milk,    Beer,      Water],      % Beverages
         [PallMall, Blend,    Prince,  Dunhill,   BlueMaster], % Cigarettes
         [Dog,      Birds,    Cats,    Horse,     Zebra]]),    % Pets
    British #= Red,        % Hint 1
    Swedish #= Dog,        % Hint 2
    Danish #= Tea,         % Hint 3
    Green #= White - 1 ,   % Hint 4
    Green #= Coffee,       % Hint 5
    PallMall #= Birds,     % Hint 6
    Yellow #= Dunhill,     % Hint 7
    Milk #= 3,             % Hint 8
    Norwegian #= 1,        % Hint 9
    neighbor(Blend, Cats),     % Hint 10
    neighbor(Horse, Dunhill),  % Hint 11
    BlueMaster #= Beer,        % Hint 12
    German #= Prince,          % Hint 13
    neighbor(Norwegian, Blue), % Hint 14
    neighbor(Blend, Water),    % Hint 15
    memberchk(Zebra-ZebraOwner, [British-british, Swedish-swedish, Danish-danish,
                                 Norwegian-norwegian, German-german]).

init_dom(R, L) :-
    all_distinct(L),
    L ins R.

neighbor(X, Y) :-
    (X #= (Y - 1)) #\/ (X #= (Y + 1)).

Wenn Sie es ausführen, wird Folgendes erzeugt:

3? - Zeit (lösen (Z)).
% 111.798 Schlussfolgerungen, 0,016 CPU in 0,020 Sekunden (78% CPU, 7166493 Lips)
Z = Deutsch.

CapelliC
quelle
neighbor(X,Y) :- abs(X-Y) #= 1.
falsch
7

ES6 (Javascript) -Lösung

Mit vielen ES6-Generatoren und ein bisschen Lodash . Sie benötigen Babel , um dies auszuführen.

var _ = require('lodash');

function canBe(house, criteria) {
    for (const key of Object.keys(criteria))
        if (house[key] && house[key] !== criteria[key])
            return false;
    return true;
}

function* thereShouldBe(criteria, street) {
    for (const i of _.range(street.length))
        yield* thereShouldBeAtIndex(criteria, i, street);
}

function* thereShouldBeAtIndex(criteria, index, street) {
    if (canBe(street[index], criteria)) {
        const newStreet = _.cloneDeep(street);
        newStreet[index] = _.assign({}, street[index], criteria);
        yield newStreet;
    }
}

function* leftOf(critA, critB, street) {
    for (const i of _.range(street.length - 1)) {
        if (canBe(street[i], critA) && canBe(street[i+1], critB)) {
            const newStreet = _.cloneDeep(street);
            newStreet[i  ] = _.assign({}, street[i  ], critA);
            newStreet[i+1] = _.assign({}, street[i+1], critB);
            yield newStreet;
        }
    }
}
function* nextTo(critA, critB, street) {
    yield* leftOf(critA, critB, street);
    yield* leftOf(critB, critA, street);
}

const street = [{}, {}, {}, {}, {}]; // five houses

// Btw: it turns out we don't need uniqueness constraint.

const constraints = [
    s => thereShouldBe({nation: 'English', color: 'red'}, s),
    s => thereShouldBe({nation: 'Swede', animal: 'dog'}, s),
    s => thereShouldBe({nation: 'Dane', drink: 'tea'}, s),
    s => leftOf({color: 'green'}, {color: 'white'}, s),
    s => thereShouldBe({drink: 'coffee', color: 'green'}, s),
    s => thereShouldBe({cigarettes: 'PallMall', animal: 'birds'}, s),
    s => thereShouldBe({color: 'yellow', cigarettes: 'Dunhill'}, s),
    s => thereShouldBeAtIndex({drink: 'milk'}, 2, s),
    s => thereShouldBeAtIndex({nation: 'Norwegian'}, 0, s),
    s => nextTo({cigarettes: 'Blend'}, {animal: 'cats'}, s),
    s => nextTo({animal: 'horse'}, {cigarettes: 'Dunhill'}, s),
    s => thereShouldBe({cigarettes: 'BlueMaster', drink: 'beer'}, s),
    s => thereShouldBe({nation: 'German', cigarettes: 'Prince'}, s),
    s => nextTo({nation: 'Norwegian'}, {color: 'blue'}, s),
    s => nextTo({drink: 'water'}, {cigarettes: 'Blend'}, s),

    s => thereShouldBe({animal: 'zebra'}, s), // should be somewhere
];

function* findSolution(remainingConstraints, street) {
    if (remainingConstraints.length === 0)
        yield street;
    else
        for (const newStreet of _.head(remainingConstraints)(street))
            yield* findSolution(_.tail(remainingConstraints), newStreet);
}

for (const streetSolution of findSolution(constraints, street)) {
    console.log(streetSolution);
}

Ergebnis:

[ { color: 'yellow',
    cigarettes: 'Dunhill',
    nation: 'Norwegian',
    animal: 'cats',
    drink: 'water' },
  { nation: 'Dane',
    drink: 'tea',
    cigarettes: 'Blend',
    animal: 'horse',
    color: 'blue' },
  { nation: 'English',
    color: 'red',
    cigarettes: 'PallMall',
    animal: 'birds',
    drink: 'milk' },
  { color: 'green',
    drink: 'coffee',
    nation: 'German',
    cigarettes: 'Prince',
    animal: 'zebra' },
  { nation: 'Swede',
    animal: 'dog',
    color: 'white',
    cigarettes: 'BlueMaster',
    drink: 'beer' } ]

Die Laufzeit beträgt für mich ungefähr 2,5 Sekunden, aber dies kann durch Ändern der Reihenfolge der Regeln erheblich verbessert werden. Ich habe mich aus Gründen der Klarheit entschlossen, die ursprüngliche Reihenfolge beizubehalten.

Danke, das war eine coole Herausforderung!

mik01aj
quelle
4

Dies ist wirklich ein Problem zur Lösung von Einschränkungen. Sie können dies mit einer verallgemeinerten Art der Weitergabe von Einschränkungen in logikprogrammierähnlichen Sprachen tun. Wir haben eine Demo speziell für das Zebra-Problem im ALE-System (Attribut Logic Engine):

http://www.cs.toronto.edu/~gpenn/ale.html

Hier ist der Link zur Codierung eines vereinfachten Zebra-Puzzles:

http://www.cs.toronto.edu/~gpenn/ale/files/grammars/baby.pl

Dies effizient zu tun ist eine andere Sache.


quelle
3

Der einfachste Weg, solche Probleme programmgesteuert zu lösen, besteht darin, verschachtelte Schleifen über alle Permutationen zu verwenden und zu überprüfen, ob das Ergebnis den Prädikaten in der Frage entspricht. Viele der Prädikate können von der inneren Schleife in die äußeren Schleifen gehoben werden, um den Rechenaufwand drastisch zu verringern, bis die Antwort in einer angemessenen Zeit berechnet werden kann.

Hier ist eine einfache F # -Lösung, die aus einem Artikel im F # -Journal abgeleitet wurde :

let rec distribute y xs =
  match xs with
  | [] -> [[y]]
  | x::xs -> (y::x::xs)::[for xs in distribute y xs -> x::xs]

let rec permute xs =
  match xs with
  | [] | [_] as xs -> [xs]
  | x::xs -> List.collect (distribute x) (permute xs)

let find xs x = List.findIndex ((=) x) xs + 1

let eq xs x ys y = find xs x = find ys y

let nextTo xs x ys y = abs(find xs x - find ys y) = 1

let nations = ["British"; "Swedish"; "Danish"; "Norwegian"; "German"]

let houses = ["Red"; "Green"; "Blue"; "White"; "Yellow"]

let drinks = ["Milk"; "Coffee"; "Water"; "Beer"; "Tea"]

let smokes = ["Blend"; "Prince"; "Blue Master"; "Dunhill"; "Pall Mall"]

let pets = ["Dog"; "Cat"; "Zebra"; "Horse"; "Bird"]

[ for nations in permute nations do
    if find nations "Norwegian" = 1 then
      for houses in permute houses do
        if eq nations "British" houses "Red" &&
           find houses "Green" = find houses "White"-1 &&
           nextTo nations "Norwegian" houses "Blue" then
          for drinks in permute drinks do
            if eq nations "Danish" drinks "Tea" &&
               eq houses "Green" drinks "Coffee" &&
               3 = find drinks "Milk" then
              for smokes in permute smokes do
                if eq houses "Yellow" smokes "Dunhill" &&
                   eq smokes "Blue Master" drinks "Beer" &&
                   eq nations "German" smokes "Prince" &&
                   nextTo smokes "Blend" drinks "Water" then
                  for pets in permute pets do
                    if eq nations "Swedish" pets "Dog" &&
                       eq smokes "Pall Mall" pets "Bird" &&
                       nextTo pets "Cat" smokes "Blend" &&
                       nextTo pets "Horse" smokes "Dunhill" then
                      yield nations, houses, drinks, smokes, pets ]

Die in 9 ms erhaltene Ausgabe ist:

val it :
  (string list * string list * string list * string list * string list) list =
  [(["Norwegian"; "Danish"; "British"; "German"; "Swedish"],
    ["Yellow"; "Blue"; "Red"; "Green"; "White"],
    ["Water"; "Tea"; "Milk"; "Coffee"; "Beer"],
    ["Dunhill"; "Blend"; "Pall Mall"; "Prince"; "Blue Master"],
    ["Cat"; "Horse"; "Bird"; "Zebra"; "Dog"])]
Jon Harrop
quelle
Ich mag das. Ich hatte nicht erwartet, dass dieser direkte Angriff machbar sein würde.
Miracle173
1

Das Microsoft Solver Foundation-Beispiel von: https://msdn.microsoft.com/en-us/library/ff525831%28v=vs.93%29.aspx?f=255&MSPPError=-2147217396

delegate CspTerm NamedTerm(string name);

public static void Zebra() {
  ConstraintSystem S = ConstraintSystem.CreateSolver();
  var termList = new List<KeyValuePair<CspTerm, string>>();

  NamedTerm House = delegate(string name) {
    CspTerm x = S.CreateVariable(S.CreateIntegerInterval(1, 5), name);
    termList.Add(new KeyValuePair<CspTerm, string>(x, name));
    return x;
  };

  CspTerm English = House("English"), Spanish = House("Spanish"),
    Japanese = House("Japanese"), Italian = House("Italian"),
    Norwegian = House("Norwegian");
  CspTerm red = House("red"), green = House("green"),
    white = House("white"),
    blue = House("blue"), yellow = House("yellow");
  CspTerm dog = House("dog"), snails = House("snails"),
    fox = House("fox"),
    horse = House("horse"), zebra = House("zebra");
  CspTerm painter = House("painter"), sculptor = House("sculptor"),
    diplomat = House("diplomat"), violinist = House("violinist"),
    doctor = House("doctor");
  CspTerm tea = House("tea"), coffee = House("coffee"),
    milk = House("milk"),
    juice = House("juice"), water = House("water");

  S.AddConstraints(
    S.Unequal(English, Spanish, Japanese, Italian, Norwegian),
    S.Unequal(red, green, white, blue, yellow),
    S.Unequal(dog, snails, fox, horse, zebra),
    S.Unequal(painter, sculptor, diplomat, violinist, doctor),
    S.Unequal(tea, coffee, milk, juice, water),
    S.Equal(English, red),
    S.Equal(Spanish, dog),
    S.Equal(Japanese, painter),
    S.Equal(Italian, tea),
    S.Equal(1, Norwegian),
    S.Equal(green, coffee),
    S.Equal(1, green - white),
    S.Equal(sculptor, snails),
    S.Equal(diplomat, yellow),
    S.Equal(3, milk),
    S.Equal(1, S.Abs(Norwegian - blue)),
    S.Equal(violinist, juice),
    S.Equal(1, S.Abs(fox - doctor)),
    S.Equal(1, S.Abs(horse - diplomat))
  );
  bool unsolved = true;
  ConstraintSolverSolution soln = S.Solve();

  while (soln.HasFoundSolution) {
    unsolved = false;
    System.Console.WriteLine("solved.");
    StringBuilder[] houses = new StringBuilder[5];
    for (int i = 0; i < 5; i++)
      houses[i] = new StringBuilder(i.ToString());
    foreach (KeyValuePair<CspTerm, string> kvp in termList) {
      string item = kvp.Value;
      object house;
      if (!soln.TryGetValue(kvp.Key, out house))
        throw new InvalidProgramException(
                    "can't find a Term in the solution: " + item);
      houses[(int)house - 1].Append(", ");
      houses[(int)house - 1].Append(item);
    }
    foreach (StringBuilder house in houses) {
      System.Console.WriteLine(house);
    }
    soln.GetNext();
  }
  if (unsolved)
    System.Console.WriteLine("No solution found.");
  else
    System.Console.WriteLine(
"Expected: the Norwegian drinking water and the Japanese with the zebra.");
}
b_levitt
quelle
1

Dies ist eine MiniZinc-Lösung für das in Wikipedia definierte Zebra-Puzzle:

include "globals.mzn";

% Zebra puzzle
int: nc = 5;

% Colors
int: red = 1;
int: green = 2;
int: ivory = 3;
int: yellow = 4;
int: blue = 5;
array[1..nc] of var 1..nc:color;
constraint alldifferent([color[i] | i in 1..nc]);

% Nationalities
int: eng = 1;
int: spa = 2;
int: ukr = 3;
int: nor = 4;
int: jap = 5;
array[1..nc] of var 1..nc:nationality;
constraint alldifferent([nationality[i] | i in 1..nc]);

% Pets
int: dog = 1;
int: snail = 2;
int: fox = 3;
int: horse = 4;
int: zebra = 5;
array[1..nc] of var 1..nc:pet;
constraint alldifferent([pet[i] | i in 1..nc]);

% Drinks
int: coffee = 1;
int: tea = 2;
int: milk = 3;
int: orange = 4;
int: water = 5;
array[1..nc] of var 1..nc:drink;
constraint alldifferent([drink[i] | i in 1..nc]);

% Smokes
int: oldgold = 1;
int: kools = 2;
int: chesterfields = 3;
int: luckystrike = 4;
int: parliaments = 5;
array[1..nc] of var 1..nc:smoke;
constraint alldifferent([smoke[i] | i in 1..nc]);

% The Englishman lives in the red house.
constraint forall ([nationality[i] == eng <-> color[i] == red | i in 1..nc]);

% The Spaniard owns the dog.
constraint forall ([nationality[i] == spa <-> pet[i] == dog | i in 1..nc]);

% Coffee is drunk in the green house.
constraint forall ([color[i] == green <-> drink[i] == coffee | i in 1..nc]);

% The Ukrainian drinks tea.
constraint forall ([nationality[i] == ukr <-> drink[i] == tea | i in 1..nc]);

% The green house is immediately to the right of the ivory house.
constraint forall ([color[i] == ivory -> if i<nc then color[i+1] == green else false endif | i in 1..nc]);

% The Old Gold smoker owns snails.
constraint forall ([smoke[i] == oldgold <-> pet[i] == snail | i in 1..nc]);

% Kools are smoked in the yellow house.
constraint forall ([smoke[i] == kools <-> color[i] == yellow | i in 1..nc]);

% Milk is drunk in the middle house.
constraint drink[3] == milk;

% The Norwegian lives in the first house.
constraint nationality[1] == nor;

% The man who smokes Chesterfields lives in the house next to the man with the fox.
constraint forall ([smoke[i] == chesterfields -> (if i>1 then pet[i-1] == fox else false endif \/ if i<nc then pet[i+1] == fox else false endif) | i in 1..nc]);

% Kools are smoked in the house next to the house where the horse is kept.
constraint forall ([smoke[i] == kools -> (if i>1 then pet[i-1] == horse else false endif \/ if i<nc then pet[i+1] == horse else false endif)| i in 1..nc]);

%The Lucky Strike smoker drinks orange juice.
constraint forall ([smoke[i] == luckystrike <-> drink[i] == orange | i in 1..nc]);

% The Japanese smokes Parliaments.
constraint forall ([nationality[i] == jap <-> smoke[i] == parliaments | i in 1..nc]);

% The Norwegian lives next to the blue house.
constraint forall ([color[i] == blue -> (if i > 1 then nationality[i-1] == nor else false endif \/ if i<nc then nationality[i+1] == nor else false endif) | i in 1..nc]);

solve satisfy;

Lösung:

Compiling zebra.mzn
Running zebra.mzn
color = array1d(1..5 ,[4, 5, 1, 3, 2]);
nationality = array1d(1..5 ,[4, 3, 1, 2, 5]);
pet = array1d(1..5 ,[3, 4, 2, 1, 5]);
drink = array1d(1..5 ,[5, 2, 3, 4, 1]);
smoke = array1d(1..5 ,[2, 3, 1, 4, 5]);
----------
Finished in 47msec
Tarik
quelle