Zählung und Summierung von positiven und negativen Zahlenfolgen

31

Ich möchte einen Code schreiben, um alle positiven und negativen Zahlenreihen zu zählen und zu summieren.
Zahlen sind entweder positiv oder negativ (keine Null).
Ich habe Codes mit forSchleifen geschrieben. Gibt es eine kreative Alternative?

Daten

R.

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

Python

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007,

     0.002, 0.002, -0.004, 0.015, 0.002, -0.001, -0.008, 0.01, -0.018, 0.046]

Schleifen

R.

sign_indicator <- ifelse(x > 0, 1,-1)
number_of_sequence <- rep(NA, 20)
n <- 1
for (i in 2:20) {
  if (sign_indicator[i] == sign_indicator[i - 1]) {
    n <- n + 1
  } else{
    n <- 1
  }
  number_of_sequence[i] <- n

}
number_of_sequence[1] <- 1

#############################

summation <- rep(NA, 20)

for (i in 1:20) {
  summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
}

Python

sign_indicator = [1 if i > 0 else -1 for i in X]

number_of_sequence = [1]
N = 1
for i in range(1, len(sign_indicator)):
    if sign_indicator[i] == sign_indicator[i - 1]:
        N += 1
    else:
        N = 1
    number_of_sequence.append(N)

#############################
summation = []

for i in range(len(X)):
    if number_of_sequence[i] == 1:          
          summation.append(X[i])

    else:
        summation.append(sum(X[(i + 1 - number_of_sequence[i]):(i + 1)]))

Ergebnis

        x n_of_sequence    sum
1  -0.010             1 -0.010
2   0.003             1  0.003
3  -0.002             1 -0.002
4   0.018             1  0.018
5   0.002             2  0.020
6   0.006             3  0.026
7  -0.012             1 -0.012
8   0.014             1  0.014
9  -0.017             1 -0.017
10 -0.007             2 -0.024
11  0.002             1  0.002
12  0.002             2  0.004
13 -0.004             1 -0.004
14  0.015             1  0.015
15  0.002             2  0.017
16 -0.001             1 -0.001
17 -0.008             2 -0.009
18  0.010             1  0.010
19 -0.018             1 -0.018
20  0.046             1  0.046
Iman
quelle

Antworten:

17

Die anderen Lösungen sehen in Ordnung aus, aber Sie müssen für dieses einfache Problem keine ausgefeilten Sprach- oder Bibliotheksfunktionen verwenden.

result, prev = [], None

for idx, cur in enumerate(x):
    if not prev or (prev > 0) != (cur > 0):
        n, summation = 1, cur
    else:
        n, summation = n + 1, summation + cur
    result.append((idx, cur, n, summation))
    prev = cur

Wie Sie sehen können, benötigen Sie keine sign_indicatorListe, zwei for-Schleifen oder rangeFunktionen wie im Snippet im Fragenbereich.

Wenn der Index bei 1 beginnen soll, verwenden Sie enumerate(x, 1)anstelle vonenumerate(x)

Um das Ergebnis anzuzeigen, können Sie den folgenden Code ausführen

for idx, num, length, summation in result:
     print(f"{idx: >2d} {num: .3f} {length: >2d} {summation: .3f}")
Bomben
quelle
14

In R können Sie mit data.tables rleidGruppen mit positiven und negativen Zahlenreihen erstellen, dann eine Folge von Zeilen in jeder Gruppe erstellen und eine kumulative Summe der xWerte erstellen .

library(data.table)
df <- data.table(x)
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)), by = rleid(sign(x))]
df

#         x n_of_sequence    sum
# 1: -0.010             1 -0.010
# 2:  0.003             1  0.003
# 3: -0.002             1 -0.002
# 4:  0.018             1  0.018
# 5:  0.002             2  0.020
# 6:  0.006             3  0.026
# 7: -0.012             1 -0.012
# 8:  0.014             1  0.014
# 9: -0.017             1 -0.017
#10: -0.007             2 -0.024
#11:  0.002             1  0.002
#12:  0.002             2  0.004
#13: -0.004             1 -0.004
#14:  0.015             1  0.015
#15:  0.002             2  0.017
#16: -0.001             1 -0.001
#17: -0.008             2 -0.009
#18:  0.010             1  0.010
#19: -0.018             1 -0.018
#20:  0.046             1  0.046

Wir können auch rleidin verwenden dplyr, um Gruppen zu erstellen und dasselbe zu tun.

library(dplyr)
df %>%
  group_by(gr = data.table::rleid(sign(x))) %>%
  mutate(n_of_sequence = row_number(), sum = cumsum(x))
Ronak Shah
quelle
2
n_of_sequenceist nicht identisch mit dem gewünschten
Iman
@Iman Entschuldigung, ich habe die Ausgabe früher falsch gelesen. Ich habe es jetzt korrigiert.
Ronak Shah
10

Sie können die Lauflängen jedes Zeichens mit rlevon basebis berechnen und so etwas tun.

set.seed(0)
z <- round(rnorm(20, sd = 0.02), 3)
run_lengths <- rle(sign(z))$lengths
run_lengths
# [1] 1 1 1 3 1 1 2 2 1 2 2 1 1 1

Bekommen n_of_sequence

n_of_sequence <- run_lengths %>% map(seq) %>% unlist
n_of_sequence
# [1] 1 1 1 1 2 3 1 1 1 2 1 2 1 1 2 1 2 1 1 1

Um schließlich die Summierungen der Sequenzen zu erhalten,

start <- cumsum(c(1,run_lengths))
start <- start[-length(start)] # start points of each series 
map2(start,run_lengths,~cumsum(z[.x:(.x+.y-1)])) %>% unlist()
# [1] -0.010  0.003 -0.002  0.018  0.020  0.026 -0.012  0.014 -0.017 -0.024
# [11]  0.002  0.004 -0.004  0.015  0.017 -0.001 -0.009  0.010 -0.018  0.046
Ameer
quelle
6

Hier ist eine einfache Funktion ohne Schleife in R:

count_and_sum <- function(x)
{
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}

So können Sie tun:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)
count_and_sum(x)
#>         x n    sum
#> 1  -0.010 1 -0.010
#> 2   0.003 1  0.003
#> 3  -0.002 1 -0.002
#> 4   0.018 1  0.018
#> 5   0.002 2  0.020
#> 6   0.006 3  0.026
#> 7  -0.012 1 -0.012
#> 8   0.014 1  0.014
#> 9  -0.017 1 -0.017
#> 10 -0.007 2 -0.024
#> 11  0.002 1  0.002
#> 12  0.002 2  0.004
#> 13 -0.004 1 -0.004
#> 14  0.015 1  0.015
#> 15  0.002 2  0.017
#> 16 -0.001 1 -0.001
#> 17 -0.008 2 -0.009
#> 18  0.010 1  0.010
#> 19 -0.018 1 -0.018
#> 20  0.046 1  0.046

Erstellt am 2020-02-16 durch das reprex-Paket (v0.3.0)

Allan Cameron
quelle
5

Hier ist eine einfache tidyverseLösung ...

library(tidyverse) #or just dplyr and tidyr

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

df <- tibble(x = x) %>% 
  mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
  group_by(seqno) %>%                                  #group by sequences
  mutate(n_of_sequence = row_number(),                 #count row numbers for each group
         sum = cumsum(x)) %>%                          #cumulative sum for each group
  ungroup() %>% 
  select(-seqno)                                       #remove sequence id

df
# A tibble: 20 x 3
        x n_of_sequence     sum
    <dbl>         <int>   <dbl>
 1 -0.01              1 -0.01  
 2  0.003             1  0.003 
 3 -0.002             1 -0.002 
 4  0.018             1  0.018 
 5  0.002             2  0.0200
 6  0.006             3  0.026 
 7 -0.012             1 -0.012 
 8  0.014             1  0.014 
 9 -0.017             1 -0.017 
10 -0.007             2 -0.024 
11  0.002             1  0.002 
12  0.002             2  0.004 
13 -0.004             1 -0.004 
14  0.015             1  0.015 
15  0.002             2  0.017 
16 -0.001             1 -0.001 
17 -0.008             2 -0.009 
18  0.01              1  0.01  
19 -0.018             1 -0.018 
20  0.046             1  0.046 
Andrew Gustar
quelle
5

Was Python betrifft, wird jemand eine Lösung finden, die die Pandas-Bibliothek verwendet. In der Zwischenzeit hier ein einfacher Vorschlag:

class Combiner:
    def __init__(self):
        self.index = self.seq_index = self.summation = 0

    def combine(self, value):
        self.index += 1
        if value * self.summation <= 0:
            self.seq_index = 1
            self.summation = value
        else:
            self.seq_index += 1
            self.summation += value
        return self.index, value, self.seq_index, self.summation

c = Combiner()
lst = [c.combine(v) for v in x]

for t in lst:
    print(f"{t[0]:3} {t[1]:7.3f} {t[2]:3} {t[3]:7.3f}")

Ausgabe:

  1  -0.010   1  -0.010
  2   0.003   1   0.003
  3  -0.002   1  -0.002
  4   0.018   1   0.018
  5   0.002   2   0.020
  6   0.006   3   0.026
  7  -0.012   1  -0.012
  8   0.014   1   0.014
  9  -0.017   1  -0.017
 10  -0.007   2  -0.024
 11   0.002   1   0.002
 12   0.002   2   0.004
 13  -0.004   1  -0.004
 14   0.015   1   0.015
 15   0.002   2   0.017
 16  -0.001   1  -0.001
 17  -0.008   2  -0.009
 18   0.010   1   0.010
 19  -0.018   1  -0.018
 20   0.046   1   0.046

Wenn Sie separate Listen benötigen, können Sie dies tun

idxs, vals, seqs, sums = (list(tpl) for tpl in zip(*lst))

oder, wenn Iteratoren in Ordnung sind, einfach

idxs, vals, seqs, sums = zip(*lst)

(Erklärung hier )

Walter Tross
quelle
5

Zwei verschiedene Lazy-Lösungen in Python mit dem Modul itertools .

Verwenden von itertools.groupby (und akkumulieren)

from itertools import accumulate, groupby

result = (
    item
    for _, group in groupby(x, key=lambda n: n < 0)
    for item in enumerate(accumulate(group), 1)
)

Verwenden von itertools.accumulate mit einer benutzerdefinierten Akkumulationsfunktion

from itertools import accumulate

def sign_count_sum(count_sum, value):
    count, prev_sum = count_sum
    same_sign = (prev_sum < 0) is (value < 0)
    if same_sign:
        return count + 1, prev_sum + value
    else:
        return 1, value

result = accumulate(x, sign_count_sum, initial=(0, 0))
next(result)  # needed to skip the initial (0, 0) item

Das initialSchlüsselwortargument wurde in Python 3.8 hinzugefügt. In früheren Versionen können Sie itertools.chaindas (0,0) -Tupel voranstellen:

result = accumulate(chain([(0, 0)], x), sign_count_sum)

Die Ausgabe ist wie erwartet:

for (i, v), (c, s) in zip(enumerate(x), result):
    print(f"{i:3} {v:7.3f} {c:3} {s:7.3f}")
  0  -0.010   1  -0.010
  1   0.003   1   0.003
  2  -0.002   1  -0.002
  3   0.018   1   0.018
  4   0.002   2   0.020
  5   0.006   3   0.026
  6  -0.012   1  -0.012
  7   0.014   1   0.014
  8  -0.017   1  -0.017
  9  -0.007   2  -0.024
 10   0.002   1   0.002
 11   0.002   2   0.004
 12  -0.004   1  -0.004
 13   0.015   1   0.015
 14   0.002   2   0.017
 15  -0.001   1  -0.001
 16  -0.008   2  -0.009
 17   0.010   1   0.010
 18  -0.018   1  -0.018
 19   0.046   1   0.046
schot
quelle
5

Ich empfehle R Paket Läufer für diese Art von Operationen. streak_run berechnet das aufeinanderfolgende Auftreten desselben Werts und sum_run berechnet die Summe im Fenster, deren Länge durch ein kArgument definiert wird .

Hier ist die Lösung:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

n_of_sequence <- runner::streak_run(x > 0)
sum <- runner::sum_run(x, k = n_of_sequence)

data.frame(x, n_of_sequence, sum)

#         x n_of_sequence    sum
# 1  -0.010             1 -0.010
# 2   0.003             1  0.003
# 3  -0.002             1 -0.002
# 4   0.018             1  0.018
# 5   0.002             2  0.020
# 6   0.006             3  0.026
# 7  -0.012             1 -0.012
# 8   0.014             1  0.014
# 9  -0.017             1 -0.017
# 10 -0.007             2 -0.024
# 11  0.002             1  0.002
# 12  0.002             2  0.004
# 13 -0.004             1 -0.004
# 14  0.015             1  0.015
# 15  0.002             2  0.017
# 16 -0.001             1 -0.001
# 17 -0.008             2 -0.009
# 18  0.010             1  0.010
# 19 -0.018             1 -0.018
# 20  0.046             1  0.046

Unterhalb der Benchmark, um die tatsächlichen Lösungen zu vergleichen

set.seed(0)
x <- round(rnorm(10000, sd = 0.02), 3)

library(runner)
runner_streak <- function(x) {
  n_of_sequence <- streak_run(x > 0)
  sum <- sum_run(x, k = n_of_sequence)
}

library(data.table)
dt <- data.table(x)
dt_streak <- function(dt) {
  dt[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}

rle_streak <- function(x) {
  run_lengths <- rle(sign(x))$lengths
  run_lengths

  n_of_sequence <- run_lengths %>% map(seq) %>% unlist

  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)]
  sum <- map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()
}

library(tidyverse)
df <- tibble(x = x)
tv_streak <- function(x) {
  res <- df %>%
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>%
    group_by(seqno) %>%
    mutate(n_of_sequence = row_number(),
           sum = cumsum(x)) %>%
    ungroup() %>% 
    select(-seqno)  
}

count_and_sum <- function(x) {
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) 
    data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}
microbenchmark::microbenchmark(
  runner_streak(x),
  dt_streak(dt),
  rle_streak(x),
  tv_streak(df),
  count_and_sum(x),
  times = 100L
)


# Unit: milliseconds
#             expr         min          lq        mean      median          uq        max neval
# runner_streak(x)    4.240192    4.833563    6.321697    5.300817    6.543926   14.80221   100
#    dt_streak(dt)    7.648100    8.587887   10.862806    9.650483   11.295488   34.66027   100
#    rle_streak(x)   42.321506   55.397586   64.195692   63.404403   67.813738  167.71444   100
#    tv_streak(df)   31.398885   36.333751   45.141452   40.800077   45.756279  163.19535   100
# count_and_sum(x) 1691.438977 1919.518282 2306.036783 2149.543281 2499.951020 6158.43384   100
GoGonzo
quelle
1
Messen in Mikrosekunden macht wenig Sinn. Einige Funktionen haben einen anfänglichen Overhead in Mikrosekunden, lassen sich jedoch für große Datenmengen viel besser skalieren als andere. Ist auch df <- data.table(x)eine vollständige Datenkopie. Außerdem drucken Sie die Daten in einigen Beispielen (bei denen es sich um eine weitere vollständige Kopie handelt), in anderen nicht.
David Arenburg
Du hast recht, fest.
GoGonzo
Einige der Funktionen geben unterschiedliche Objekte zurück - einige Vektoren und einige Datenrahmen -, sodass dies immer noch kein fairer Benchmark ist. Auch einige geben unterschiedliche Ergebnisse. Versuchen Sie es r = runner_streak(x); d = dt_streak(dt) ; all.equal(r, d$sum). Nur ein paar geprüft aber tv_streakgibt das gleiche wie dt_streak; count_and_sumgibt die gleichen, runner_streakdie sich von den beiden vorhergehenden unterscheiden.
user2957945
3

In R können Sie auch Folgendes tun:

# DATA
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

library(data.table)
dt <- data.table(x = x)

# Create Positive or Negative variable
dt$x_logical <- ifelse(dt$x > 0, "P", "N")

# Create a reference data.frame/table to keep continuous counts
seq_dt <- data.frame(val = rle(x = dt$x_logical)$lengths)
seq_dt$id <- 1:nrow(seq_dt)

# Map id in the main data.table and get cumulative sum
dt$id <- rep(seq_dt$id, seq_dt$val)
dt[, csum := cumsum(x), by = "id"]


        x x_logical id   csum
 1: -0.010         N  1 -0.010
 2:  0.003         P  2  0.003
 3: -0.002         N  3 -0.002
 4:  0.018         P  4  0.018
 5:  0.002         P  4  0.020
 6:  0.006         P  4  0.026
 7: -0.012         N  5 -0.012
 8:  0.014         P  6  0.014
 9: -0.017         N  7 -0.017
10: -0.007         N  7 -0.024
11:  0.002         P  8  0.002
12:  0.002         P  8  0.004
13: -0.004         N  9 -0.004
14:  0.015         P 10  0.015
15:  0.002         P 10  0.017
16: -0.001         N 11 -0.001
17: -0.008         N 11 -0.009
18:  0.010         P 12  0.010
19: -0.018         N 13 -0.018
20:  0.046         P 14  0.046
MKa
quelle
3

Ich werfe meine [r] Antwort in den Hut, bin auf Geschwindigkeit optimiert und funktioniert mit jeder Länge von x (im Gegensatz zu der Frage, die für Länge 20 fest codiert wurde):

### data 
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

### solution
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

Um die Laufzeiten auf meinem aktuellen (sehr langsamen) Arbeitscomputer zu vergleichen, sehen Sie hier die Ausgabe meines Mikrobenchmarks unter Verwendung aller R-Lösungen in diesem Thread. Es ist nicht überraschend, dass die Lösungen, die die meisten Kopien und Konvertierungen erstellen, tendenziell langsamer sind.

Unit: microseconds
         expr      min       lq       mean    median       uq      max neval
     my_way()   13.301   19.200   23.38352   21.4010   23.401  20604.0 1e+05
 author_way()   19.702   31.701   40.12371   36.0015   40.502  24393.9 1e+05
      ronak()  856.401 1113.601 1305.36419 1236.8010 1377.501 453191.4 1e+05
      ameer()  388.501  452.002  553.08263  491.3000  548.701 456156.6 1e+05
     andrew() 2007.801 2336.801 2748.57713 2518.1510 2760.302 463175.8 1e+05
      gonzo()   21.901   35.502   48.84946   43.9010   51.001  29519.5 1e+05

-------------- BEARBEITEN -------------- @nicola hat darauf hingewiesen, dass meine Lösung für längere x-Längen nicht die schnellste ist sollte ziemlich offensichtlich sein, da ich ständig Kopien von Vektoren mache, indem ich Aufrufe wie x <- c (x, y) verwende. Ich habe nur die schnellste Lösung für Längen = 20 erstellt und nur so niedrig wie möglich mit Mikrobenchmarkierungen versehen.

Um einen faireren Vergleich zu ermöglichen, habe ich alle Versionen bearbeitet, um den Originalcode so zu generieren, wie ich es für am schnellsten halte, aber ich freue mich über Feedback dazu. Hier ist mein vollständiger Benchmarking-Code und die Ergebnisse für mein sehr langsames System. Ich freue mich über jede Rückmeldung.

# originally benchmarked a few different lengths
for(pie in c(100000)){


my_way<- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

# print(summation)
}




author_way <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)

  sign_indicator <- ifelse(x > 0, 1,-1)
  sky <- length(x)
  number_of_sequence <- rep(NA, sky)
  n <- 1
  for (i in 2:sky) {
    if (sign_indicator[i] == sign_indicator[i - 1]) {
      n <- n + 1
    } else{
      n <- 1
    }
    number_of_sequence[i] <- n

  }
  number_of_sequence[1] <- 1

  #############################

  summation <- rep(NA, sky)

  for (i in 1:sky) {
    summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
  }
}


# other ppls solutions:




ronak <- function(){
df <- data.table('x' = round(rnorm(pie, sd = 0.02), 3))
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}



ameer <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  run_lengths <- rle(sign(x))$lengths
  n_of_sequence <- run_lengths %>% map(seq) %>% unlist
  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)] # start points of each series 
  map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()

}


count_and_sum <- function(x){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}



andrew <- function(){
  set.seed(100)
  df <- tibble(x = round(rnorm(pie, sd = 0.02), 3)) %>% 
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
    group_by(seqno) %>%                                  #group by sequences
    mutate(n_of_sequence = row_number(),                 #count row numbers for each group
           sum = cumsum(x)) %>%                          #cumulative sum for each group
    ungroup() %>% 
    select(-seqno) 
}

gonzo <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  n_of_sequence <- runner::streak_run(x > 0)
  sum <- runner::sum_run(x, k = n_of_sequence)
}



mi1 <- microbenchmark(my_way(), author_way(), ronak(), ameer(), andrew(), gonzo(), times = 10)
print(mi1)

}

Wie diese Ergebnisse zeigen, ist meine Version für andere Längen als die, für die ich optimiert habe, langsam. Je länger x ist, desto langsamer wird es bei allem über 1000 lächerlich langsam. Meine Lieblingsversion ist Ronaks, die nur die zweitschnellste auf meinem System ist. GoGonzo ist bei diesen längeren Längen bei weitem der schnellste auf meiner Maschine.

Unit: milliseconds
         expr        min         lq        mean      median         uq        max neval
     my_way() 21276.9027 21428.2694 21604.30191 21581.97970 21806.9543 21896.7105    10
 author_way()    82.2465    83.0873    89.42343    84.78315    85.3638   115.4550    10
      ronak()    68.3922    69.3067    70.41924    69.84625    71.3509    74.7070    10
      ameer()   481.4566   509.7552   521.19034   514.77000   530.1121   579.4707    10
     andrew()   200.9654   202.1898   210.84914   206.20465   211.2006   233.7618    10
      gonzo()    27.3317    28.2550    28.66679    28.50535    28.9104    29.9549    10
Adverse_Event
quelle
Auch die anderen Antworten funktionieren für jede Länge und Ihr Benchmark muss ein Problem haben. In Bezug auf die data.table@ Ronak-Lösung ist Ihre Lösung für eine Länge von ~ 100000 um Größenordnungen langsamer.
Nicole
Vielen Dank an @nicola, ich habe nur gesagt, dass die Lösung des Fragestellers nur für 20 Elemente funktioniert, nicht für eine andere Lösung - sie funktioniert tatsächlich. Ich habe auch die Geschwindigkeit für die Länge von 20 Artikeln optimiert, damit mein Anspruch, der Schnellste zu sein, dort endet. Für das, was es wert ist, mochte ich Ronaks Lösung auch am besten, aber der Autor fragte ausdrücklich nach verschiedenen Möglichkeiten, das Problem zu lösen. Ronak's ist auch schon für eine Länge von 1000 schneller.
Adverse_Event
Und um die Mikrobank zu erweitern. Ich habe meinen Benchmark so umkodiert, dass jede Lösung (x) in dem von ihnen verwendeten Format erstellt hat, sodass diejenigen, die tibbles dazu bringen, x im tibble-Aufruf zu generieren, dasselbe gilt für data.table usw. Ich habe die ursprüngliche Lösung des Fragestellers neu codiert, also arbeiten Sie für beliebige Längen (Speichern Sie einfach die Länge von x in einer Variablen und ersetzen Sie die 20 durch diese. Ich habe sie dann für eine Länge von 100.000 für 10 Iterationen ausgeführt. Beachten Sie, dass mein Computer sehr langsam ist und auf einem Interprozessor der 5. Generation mit DDR3 ausgeführt wird 1600 MHz. Ich bearbeite meinen Beitrag mit diesen Ergebnissen.
Adverse_Event
2

In Python können Sie nicht nur eine Klasse zum Speichern der Speichervariablen definieren, sondern auch einen Abschluss verwenden, um dasselbe zu erreichen.

def run():
    count = 0
    last_sign = 0

    def sign(i):
        return 1 if i > 0 else -1

    def f(i):
        nonlocal count
        nonlocal last_sign
        if sign(i) == last_sign:
            count = count+1
        else:
            last_sign = sign(i)
            count = 1
        return count

    return f

f = run()
y = [f(i) for i in x]

Beachten Sie, dass dies nur für Python 3 funktioniert (in Python 2 können Sie die Abschlussvariable meiner Meinung nach nicht so ändern). Ähnliches gilt auch für die Summierung.

Prodipta Ghosh
quelle
2

Ich denke, eine Schleife wäre einfacher zu lesen, aber nur zum Spaß, hier ist eine Lösung in Python mit Rekursion:

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007, 0.002, 0.002, -0.004, 0.015, 0.002,
     -0.001, -0.008, 0.01, -0.018, 0.046]


def sign(number):
    return 1 if number > 0 else -1


def sum_previous(pos, result=None):
    if not result:
        result = x[pos]
    else:
        result += x[pos]
    if pos == 0 or sign(x[pos]) != sign(x[pos-1]):
        return result
    else:
        return sum_previous(pos-1, result)


results = [sum_previous(i) for i in range(len(x))]
print(results)
RogB
quelle
2

Hier ist ein weiterer Basis-R-Ansatz:

data.frame(x,
           n = sequence(rle(sign(x))$lengths),
           sum = Reduce(function(x, y) if (sign(x) == sign(y)) x + y else y, x, accumulate = TRUE))

        x n    sum
1  -0.010 1 -0.010
2   0.003 1  0.003
3  -0.002 1 -0.002
4   0.018 1  0.018
5   0.002 2  0.020
6   0.006 3  0.026
7  -0.012 1 -0.012
8   0.014 1  0.014
9  -0.017 1 -0.017
10 -0.007 2 -0.024
11  0.002 1  0.002
12  0.002 2  0.004
13 -0.004 1 -0.004
14  0.015 1  0.015
15  0.002 2  0.017
16 -0.001 1 -0.001
17 -0.008 2 -0.009
18  0.010 1  0.010
19 -0.018 1 -0.018
20  0.046 1  0.046
H 1
quelle
Nur um nicht zu picken, wird Reduceeine Schleife ausgeblendet, sodass dies keine Lösung ohne Schleife ist.
Nicole
2

Eine einfache Python-Antwort ignoriert den 0-Fall:

x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
     -0.017, -0.007, 0.002, 0.002, 
     -0.004, 0.015, 0.002, -0.001, 
     -0.008, 0.01, -0.018, 0.046]

count = 0
sign_positive = x[0] > 0
sign_count = []
for n in x:
    # the idea is to keep track of the sign and increment the 
    # count if it agrees with the current number we are looking at
    if (n > 0 and sign_positive) or (n < 0 and not sign_positive):
        count = count + 1
    # if it does not, the count goes back to 1
    else:
        count = 1
    # Whether we increased the count or not, we update whether the
    # sign was positive or negative
    sign_positive = n > 0
    sign_count.append(count)

# This is just to reproduce the output 
# (although I find the last repetition of the number unnecessary)    
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.002  1  0.002
11  0.002  2  0.002
12 -0.004  1 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046

Eine etwas ausgefeiltere Lösung kümmert sich auch um den Fall 0:

# To test the 0 case I am changing two numbers to 0
x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
    -0.017, -0.007, 0, 0, 
    -0.004, 0.015, 0.002, -0.001, 
    -0.008, 0.01, -0.018, 0.046]

# The rest is similar
count = 0
# This time we are using a nested ternary assignment 
# to account for the case of 0
# This would be more readable as a function, 
# but what it does is simple
# It returns None if n is 0, 
# True if it is larger than 0 
# and False if it less than 0
sign_positive = None if n == 0 else False if n < 0 else True
sign_count = []
for n in x:
    # We add the case of 0 by adding a third condition where
    # sign_positive was None (meaning the previous
    # number was 0) and the current number is 0.
    if (n > 0 and sign_positive) or \
       (n < 0 and not sign_positive) or \
       (n == 0 and sign_positive == None):
        count = count + 1
    else:
        count = 1
    sign_positive = None if n == 0 else False if n < 0 else True
    sign_count.append(count)
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.000  1  0.000
11  0.000  2  0.000
12 -0.004  3 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046
Sinan Kurmus
quelle