Ich habe ein Programm mit einer interaktiven Figur, in der gelegentlich viele Künstler gezeichnet werden. In dieser Abbildung können Sie auch mit der Maus zoomen und schwenken. Die Leistung beim Zoomen und Schwenken ist jedoch nicht sehr gut, da jeder Künstler immer neu gezeichnet wird. Gibt es eine Möglichkeit zu überprüfen, welche Künstler sich im aktuell angezeigten Bereich befinden und nur diese neu zu zeichnen? (Im folgenden Beispiel ist die Leistung immer noch relativ gut, kann jedoch durch die Verwendung von mehr oder komplexeren Künstlern beliebig verschlechtert werden.)
Ich hatte ein ähnliches Leistungsproblem mit der hover
Methode, dass sie canvas.draw()
am Ende immer dann ausgeführt wurde, wenn sie aufgerufen wurde . Aber wie Sie sehen, habe ich eine gute Lösung gefunden, indem ich das Caching verwendet und den Hintergrund der Achsen wiederhergestellt habe (basierend darauf ). Dies hat die Performance erheblich verbessert und läuft auch bei vielen Künstlern sehr flüssig. Vielleicht gibt es einen ähnlichen Weg, dies zu tun, außer für die Methode pan
und zoom
?
Entschuldigen Sie das lange Codebeispiel. Das meiste davon ist für die Frage nicht direkt relevant, aber für ein funktionierendes Beispiel erforderlich, um das Problem hervorzuheben.
BEARBEITEN
Ich habe die MWE auf etwas aktualisiert, das repräsentativer für meinen tatsächlichen Code ist.
import numpy as np
import numpy as np
import sys
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import \
FigureCanvasQTAgg
import matplotlib.patheffects as PathEffects
from matplotlib.text import Annotation
from matplotlib.collections import LineCollection
from PyQt5.QtWidgets import QApplication, QVBoxLayout, QDialog
def check_limits(base_xlim, base_ylim, new_xlim, new_ylim):
if new_xlim[0] < base_xlim[0]:
overlap = base_xlim[0] - new_xlim[0]
new_xlim[0] = base_xlim[0]
if new_xlim[1] + overlap > base_xlim[1]:
new_xlim[1] = base_xlim[1]
else:
new_xlim[1] += overlap
if new_xlim[1] > base_xlim[1]:
overlap = new_xlim[1] - base_xlim[1]
new_xlim[1] = base_xlim[1]
if new_xlim[0] - overlap < base_xlim[0]:
new_xlim[0] = base_xlim[0]
else:
new_xlim[0] -= overlap
if new_ylim[1] < base_ylim[1]:
overlap = base_ylim[1] - new_ylim[1]
new_ylim[1] = base_ylim[1]
if new_ylim[0] + overlap > base_ylim[0]:
new_ylim[0] = base_ylim[0]
else:
new_ylim[0] += overlap
if new_ylim[0] > base_ylim[0]:
overlap = new_ylim[0] - base_ylim[0]
new_ylim[0] = base_ylim[0]
if new_ylim[1] - overlap < base_ylim[1]:
new_ylim[1] = base_ylim[1]
else:
new_ylim[1] -= overlap
return new_xlim, new_ylim
class FigureCanvas(FigureCanvasQTAgg):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.bg_cache = None
def draw(self):
ax = self.figure.axes[0]
hid_annotation = False
if ax.annot.get_visible():
ax.annot.set_visible(False)
hid_annotation = True
hid_highlight = False
if ax.last_artist:
ax.last_artist.set_path_effects([PathEffects.Normal()])
hid_highlight = True
super().draw()
self.bg_cache = self.copy_from_bbox(self.figure.bbox)
if hid_highlight:
ax.last_artist.set_path_effects(
[PathEffects.withStroke(
linewidth=7, foreground="c", alpha=0.4
)]
)
ax.draw_artist(ax.last_artist)
if hid_annotation:
ax.annot.set_visible(True)
ax.draw_artist(ax.annot)
if hid_highlight:
self.update()
def position(t_, coeff, var=0.1):
x_ = np.random.normal(np.polyval(coeff[:, 0], t_), var)
y_ = np.random.normal(np.polyval(coeff[:, 1], t_), var)
return x_, y_
class Data:
def __init__(self, times):
self.length = np.random.randint(1, 20)
self.t = np.sort(
np.random.choice(times, size=self.length, replace=False)
)
self.vel = [np.random.uniform(-2, 2), np.random.uniform(-2, 2)]
self.accel = [np.random.uniform(-0.01, 0.01), np.random.uniform(-0.01,
0.01)]
x0, y0 = np.random.uniform(0, 1000, 2)
self.x, self.y = position(
self.t, np.array([self.accel, self.vel, [x0, y0]])
)
class Test(QDialog):
def __init__(self):
super().__init__()
self.fig, self.ax = plt.subplots()
self.canvas = FigureCanvas(self.fig)
self.artists = []
self.zoom_factor = 1.5
self.x_press = None
self.y_press = None
self.annot = Annotation(
"", xy=(0, 0), xytext=(-20, 20), textcoords="offset points",
bbox=dict(boxstyle="round", fc="w", alpha=0.7), color='black',
arrowprops=dict(arrowstyle="->"), zorder=6, visible=False,
annotation_clip=False, in_layout=False,
)
self.annot.set_clip_on(False)
setattr(self.ax, 'annot', self.annot)
self.ax.add_artist(self.annot)
self.last_artist = None
setattr(self.ax, 'last_artist', self.last_artist)
self.image = np.random.uniform(0, 100, 1000000).reshape((1000, 1000))
self.ax.imshow(self.image, cmap='gray', interpolation='nearest')
self.times = np.linspace(0, 20)
for i in range(1000):
data = Data(self.times)
points = np.array([data.x, data.y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
z = np.linspace(0, 1, data.length)
norm = plt.Normalize(z.min(), z.max())
lc = LineCollection(
segments, cmap='autumn', norm=norm, alpha=1,
linewidths=2, picker=8, capstyle='round',
joinstyle='round'
)
setattr(lc, 'data_id', i)
lc.set_array(z)
self.ax.add_artist(lc)
self.artists.append(lc)
self.default_xlim = self.ax.get_xlim()
self.default_ylim = self.ax.get_ylim()
self.canvas.draw()
self.cid_motion = self.fig.canvas.mpl_connect(
'motion_notify_event', self.motion_event
)
self.cid_button = self.fig.canvas.mpl_connect(
'button_press_event', self.pan_press
)
self.cid_zoom = self.fig.canvas.mpl_connect(
'scroll_event', self.zoom
)
layout = QVBoxLayout()
layout.addWidget(self.canvas)
self.setLayout(layout)
def zoom(self, event):
if event.inaxes == self.ax:
scale_factor = np.power(self.zoom_factor, -event.step)
xdata = event.xdata
ydata = event.ydata
cur_xlim = self.ax.get_xlim()
cur_ylim = self.ax.get_ylim()
x_left = xdata - cur_xlim[0]
x_right = cur_xlim[1] - xdata
y_top = ydata - cur_ylim[0]
y_bottom = cur_ylim[1] - ydata
new_xlim = [
xdata - x_left * scale_factor, xdata + x_right * scale_factor
]
new_ylim = [
ydata - y_top * scale_factor, ydata + y_bottom * scale_factor
]
# intercept new plot parameters if they are out of bounds
new_xlim, new_ylim = check_limits(
self.default_xlim, self.default_ylim, new_xlim, new_ylim
)
if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
self.ax.set_xlim(new_xlim)
self.ax.set_ylim(new_ylim)
self.canvas.draw_idle()
def motion_event(self, event):
if event.button == 1:
self.pan_move(event)
else:
self.hover(event)
def pan_press(self, event):
if event.inaxes == self.ax:
self.x_press = event.xdata
self.y_press = event.ydata
def pan_move(self, event):
if event.inaxes == self.ax:
xdata = event.xdata
ydata = event.ydata
cur_xlim = self.ax.get_xlim()
cur_ylim = self.ax.get_ylim()
dx = xdata - self.x_press
dy = ydata - self.y_press
new_xlim = [cur_xlim[0] - dx, cur_xlim[1] - dx]
new_ylim = [cur_ylim[0] - dy, cur_ylim[1] - dy]
# intercept new plot parameters that are out of bound
new_xlim, new_ylim = check_limits(
self.default_xlim, self.default_ylim, new_xlim, new_ylim
)
if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
self.ax.set_xlim(new_xlim)
self.ax.set_ylim(new_ylim)
self.canvas.draw_idle()
def update_annot(self, event, artist):
self.ax.annot.xy = (event.xdata, event.ydata)
text = f'Data #{artist.data_id}'
self.ax.annot.set_text(text)
self.ax.annot.set_visible(True)
self.ax.draw_artist(self.ax.annot)
def hover(self, event):
vis = self.ax.annot.get_visible()
if event.inaxes == self.ax:
ind = 0
cont = None
while (
ind in range(len(self.artists))
and not cont
):
artist = self.artists[ind]
cont, _ = artist.contains(event)
if cont and artist is not self.ax.last_artist:
if self.ax.last_artist is not None:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects(
[PathEffects.Normal()]
)
self.ax.last_artist = None
artist.set_path_effects(
[PathEffects.withStroke(
linewidth=7, foreground="c", alpha=0.4
)]
)
self.ax.last_artist = artist
self.ax.draw_artist(self.ax.last_artist)
self.update_annot(event, self.ax.last_artist)
ind += 1
if vis and not cont and self.ax.last_artist:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects([PathEffects.Normal()])
self.ax.last_artist = None
self.ax.annot.set_visible(False)
elif vis:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects([PathEffects.Normal()])
self.ax.last_artist = None
self.ax.annot.set_visible(False)
self.canvas.update()
self.canvas.flush_events()
if __name__ == '__main__':
app = QApplication(sys.argv)
test = Test()
test.show()
sys.exit(app.exec_())
plot
mit allen Punkten verwenden würden, würde das Problem nicht auftreten.Antworten:
Sie können herausfinden, welche Künstler sich im aktuellen Bereich der Achsen befinden, wenn Sie sich auf die Daten konzentrieren, die die Künstler zeichnen.
Zum Beispiel, wenn Sie Ihre Punktedaten (
a
undb
Arrays) in ein Numpy-Array wie folgt einfügen:Sie können die Liste der Punkte innerhalb der aktuellen x- und y-Grenzen abrufen:
Sie verwenden können
indices_of_visible_points
Ihre im Zusammenhang mitself.artists
Indexlistequelle