Ich habe ein Programm, das über eine GUI, die ich in PyQt geschrieben habe, mit einem Radio verbunden ist, das ich verwende. Natürlich besteht eine der Hauptfunktionen des Radios darin, Daten zu übertragen, aber um dies kontinuierlich zu tun, muss ich die Schreibvorgänge schleifen, wodurch die GUI hängen bleibt. Da ich mich noch nie mit Threading befasst habe, habe ich versucht, diese Hänge mit zu beseitigen. QCoreApplication.processEvents().
Das Radio muss jedoch zwischen den Übertragungen schlafen, sodass die GUI immer noch hängt, je nachdem, wie lange diese Schlafzeiten dauern.
Gibt es eine einfache Möglichkeit, dies mit QThread zu beheben? Ich habe nach Tutorials zur Implementierung von Multithreading mit PyQt gesucht, aber die meisten befassen sich mit der Einrichtung von Servern und sind viel weiter fortgeschritten, als ich es brauche. Ich brauche meinen Thread ehrlich gesagt nicht einmal wirklich, um etwas zu aktualisieren, während er ausgeführt wird. Ich muss ihn nur starten, im Hintergrund übertragen und stoppen.
self.finished
Signal erzeugt haben? Wenn ich beispielsweise nicht nur die Anzahl drucken möchte, möchte ich den Wert der Anzahl in einer QSpinBox anzeigen, die Teil meiner Benutzeroberfläche der anderen Klasse ist.usingMoveToThread()
, mit QThread zu kommentieren und zu kommentieren, aber wenn ich das Skript Steigern ausführe, wird das Erhöhen nie auf dem Terminal ausgedruckt.Nehmen Sie diese Antwort aktualisiert für PyQt5, Python 3.4
Verwenden Sie dies als Muster, um einen Worker zu starten, der keine Daten nimmt und Daten zurückgibt, sobald diese für das Formular verfügbar sind.
1 - Die Worker-Klasse wird verkleinert und in eine eigene Datei worker.py eingefügt, um das Speichern und die unabhängige Wiederverwendung von Software zu vereinfachen.
2 - Die Datei main.py ist die Datei, die die GUI-Formularklasse definiert
3 - Das Thread-Objekt ist nicht in Unterklassen unterteilt.
4 - Sowohl das Thread-Objekt als auch das Worker-Objekt gehören zum Form-Objekt
5 - Schritte des Verfahrens sind in den Kommentaren enthalten.
# worker.py from PyQt5.QtCore import QThread, QObject, pyqtSignal, pyqtSlot import time class Worker(QObject): finished = pyqtSignal() intReady = pyqtSignal(int) @pyqtSlot() def procCounter(self): # A slot takes no params for i in range(1, 100): time.sleep(1) self.intReady.emit(i) self.finished.emit()
Und die Hauptdatei ist:
# main.py from PyQt5.QtCore import QThread from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QGridLayout import sys import worker class Form(QWidget): def __init__(self): super().__init__() self.label = QLabel("0") # 1 - create Worker and Thread inside the Form self.obj = worker.Worker() # no parent! self.thread = QThread() # no parent! # 2 - Connect Worker`s Signals to Form method slots to post data. self.obj.intReady.connect(self.onIntReady) # 3 - Move the Worker object to the Thread object self.obj.moveToThread(self.thread) # 4 - Connect Worker Signals to the Thread slots self.obj.finished.connect(self.thread.quit) # 5 - Connect Thread started signal to Worker operational slot method self.thread.started.connect(self.obj.procCounter) # * - Thread finished signal will close the app if you want! #self.thread.finished.connect(app.exit) # 6 - Start the thread self.thread.start() # 7 - Start the form self.initUI() def initUI(self): grid = QGridLayout() self.setLayout(grid) grid.addWidget(self.label,0,0) self.move(300, 150) self.setWindowTitle('thread test') self.show() def onIntReady(self, i): self.label.setText("{}".format(i)) #print(i) app = QApplication(sys.argv) form = Form() sys.exit(app.exec_())
quelle
QThread: Destroyed while thread is still running
den letzten drei Stunden damit beschäftigt, dann habe ich das gelesen und es hat geklickt!Sehr schönes Beispiel von Matt, ich habe den Tippfehler behoben und auch pyqt4.8 ist jetzt üblich, also habe ich auch die Dummy-Klasse entfernt und ein Beispiel für das dataReady-Signal hinzugefügt
# -*- coding: utf-8 -*- import sys from PyQt4 import QtCore, QtGui from PyQt4.QtCore import Qt # very testable class (hint: you can use mock.Mock for the signals) class Worker(QtCore.QObject): finished = QtCore.pyqtSignal() dataReady = QtCore.pyqtSignal(list, dict) @QtCore.pyqtSlot() def processA(self): print "Worker.processA()" self.finished.emit() @QtCore.pyqtSlot(str, list, list) def processB(self, foo, bar=None, baz=None): print "Worker.processB()" for thing in bar: # lots of processing... self.dataReady.emit(['dummy', 'data'], {'dummy': ['data']}) self.finished.emit() def onDataReady(aList, aDict): print 'onDataReady' print repr(aList) print repr(aDict) app = QtGui.QApplication(sys.argv) thread = QtCore.QThread() # no parent! obj = Worker() # no parent! obj.dataReady.connect(onDataReady) obj.moveToThread(thread) # if you want the thread to stop after the worker is done # you can always call thread.start() again later obj.finished.connect(thread.quit) # one way to do it is to start processing as soon as the thread starts # this is okay in some cases... but makes it harder to send data to # the worker object from the main gui thread. As you can see I'm calling # processA() which takes no arguments thread.started.connect(obj.processA) thread.finished.connect(app.exit) thread.start() # another way to do it, which is a bit fancier, allows you to talk back and # forth with the object in a thread safe way by communicating through signals # and slots (now that the thread is running I can start calling methods on # the worker object) QtCore.QMetaObject.invokeMethod(obj, 'processB', Qt.QueuedConnection, QtCore.Q_ARG(str, "Hello World!"), QtCore.Q_ARG(list, ["args", 0, 1]), QtCore.Q_ARG(list, [])) # that looks a bit scary, but its a totally ok thing to do in Qt, # we're simply using the system that Signals and Slots are built on top of, # the QMetaObject, to make it act like we safely emitted a signal for # the worker thread to pick up when its event loop resumes (so if its doing # a bunch of work you can call this method 10 times and it will just queue # up the calls. Note: PyQt > 4.6 will not allow you to pass in a None # instead of an empty list, it has stricter type checking app.exec_()
quelle
QMetaObject
ist hässlich wie die HölleQMetaObject
Hacks auf Basis von Hebel zu nutzen, denen eine ganze Kommentarwand mit Handwinken vorangestellt ist, wenn Sie stattdessen einfach die richtigen Signal-Slot-Verbindungen definieren könnten.</sigh>
Laut den Qt-Entwicklern ist die Unterklasse von QThread falsch (siehe http://blog.qt.io/blog/2010/06/17/youre-doing-it-wrong/ ). Aber dieser Artikel ist wirklich schwer zu verstehen (und der Titel ist etwas herablassend). Ich habe einen besseren Blog-Beitrag gefunden, der eine detailliertere Erklärung darüber enthält, warum Sie einen Threading-Stil über einen anderen verwenden sollten: http://mayaposch.wordpress.com/2011/11/01/how-to-really-truly-use- qthreads-the-full-erklärung /
Meiner Meinung nach sollten Sie Threads wahrscheinlich niemals in Unterklassen unterteilen, um die Ausführungsmethode zu überladen. Während das funktioniert, umgehen Sie im Grunde, wie Qt möchte, dass Sie arbeiten. Außerdem verpassen Sie Dinge wie Ereignisse und geeignete threadsichere Signale und Slots. Wie Sie wahrscheinlich im obigen Blog-Beitrag sehen werden, zwingt Sie die "richtige" Art des Threading dazu, mehr testbaren Code zu schreiben.
Hier sind einige Beispiele, wie Sie QThreads in PyQt nutzen können (Ich habe unten eine separate Antwort veröffentlicht, die QRunnable ordnungsgemäß verwendet und Signale / Slots enthält. Diese Antwort ist besser, wenn Sie viele asynchrone Aufgaben haben, die Sie zum Lastausgleich benötigen.) .
import sys from PyQt4 import QtCore from PyQt4 import QtGui from PyQt4.QtCore import Qt # very testable class (hint: you can use mock.Mock for the signals) class Worker(QtCore.QObject): finished = QtCore.pyqtSignal() dataReady = QtCore.pyqtSignal(list, dict) @QtCore.pyqtSlot() def processA(self): print "Worker.processA()" self.finished.emit() @QtCore.pyqtSlot(str, list, list) def processB(self, foo, bar=None, baz=None): print "Worker.processB()" for thing in bar: # lots of processing... self.dataReady.emit(['dummy', 'data'], {'dummy': ['data']}) self.finished.emit() class Thread(QtCore.QThread): """Need for PyQt4 <= 4.6 only""" def __init__(self, parent=None): QtCore.QThread.__init__(self, parent) # this class is solely needed for these two methods, there # appears to be a bug in PyQt 4.6 that requires you to # explicitly call run and start from the subclass in order # to get the thread to actually start an event loop def start(self): QtCore.QThread.start(self) def run(self): QtCore.QThread.run(self) app = QtGui.QApplication(sys.argv) thread = Thread() # no parent! obj = Worker() # no parent! obj.moveToThread(thread) # if you want the thread to stop after the worker is done # you can always call thread.start() again later obj.finished.connect(thread.quit) # one way to do it is to start processing as soon as the thread starts # this is okay in some cases... but makes it harder to send data to # the worker object from the main gui thread. As you can see I'm calling # processA() which takes no arguments thread.started.connect(obj.processA) thread.start() # another way to do it, which is a bit fancier, allows you to talk back and # forth with the object in a thread safe way by communicating through signals # and slots (now that the thread is running I can start calling methods on # the worker object) QtCore.QMetaObject.invokeMethod(obj, 'processB', Qt.QueuedConnection, QtCore.Q_ARG(str, "Hello World!"), QtCore.Q_ARG(list, ["args", 0, 1]), QtCore.Q_ARG(list, [])) # that looks a bit scary, but its a totally ok thing to do in Qt, # we're simply using the system that Signals and Slots are built on top of, # the QMetaObject, to make it act like we safely emitted a signal for # the worker thread to pick up when its event loop resumes (so if its doing # a bunch of work you can call this method 10 times and it will just queue # up the calls. Note: PyQt > 4.6 will not allow you to pass in a None # instead of an empty list, it has stricter type checking app.exec_() # Without this you may get weird QThread messages in the shell on exit app.deleteLater()
quelle
appears to be a bug in PyQt 4.6
Können Sie auf das Problem hinweisen, damit wir wissen, ob / wann es behoben ist?In PyQt gibt es viele Optionen, um asynchrones Verhalten zu erhalten. Für Dinge, die eine Ereignisverarbeitung erfordern (z. B. QtNetwork usw.), sollten Sie das QThread-Beispiel verwenden, das ich in meiner anderen Antwort auf diesen Thread angegeben habe. Aber für die überwiegende Mehrheit Ihrer Threading-Anforderungen denke ich, dass diese Lösung den anderen Methoden weit überlegen ist.
Dies hat den Vorteil, dass der QThreadPool Ihre QRunnable-Instanzen als Aufgaben plant. Dies ähnelt dem Aufgabenmuster, das in Intels TBB verwendet wird. Es ist nicht ganz so elegant wie ich es mag, aber es zeigt ein ausgezeichnetes asynchrones Verhalten.
Auf diese Weise können Sie den größten Teil der Threading-Leistung von Qt in Python über QRunnable nutzen und dennoch die Vorteile von Signalen und Slots nutzen. Ich verwende denselben Code in mehreren Anwendungen, von denen einige Hunderte von asynchronen REST-Aufrufen ausführen, andere Dateien öffnen oder Verzeichnisse auflisten. Das Beste daran ist, dass diese Methode verwendet wird. Die Qt-Task gleicht die Systemressourcen für mich aus.
import time from PyQt4 import QtCore from PyQt4 import QtGui from PyQt4.QtCore import Qt def async(method, args, uid, readycb, errorcb=None): """ Asynchronously runs a task :param func method: the method to run in a thread :param object uid: a unique identifier for this task (used for verification) :param slot updatecb: the callback when data is receieved cb(uid, data) :param slot errorcb: the callback when there is an error cb(uid, errmsg) The uid option is useful when the calling code makes multiple async calls and the callbacks need some context about what was sent to the async method. For example, if you use this method to thread a long running database call and the user decides they want to cancel it and start a different one, the first one may complete before you have a chance to cancel the task. In that case, the "readycb" will be called with the cancelled task's data. The uid can be used to differentiate those two calls (ie. using the sql query). :returns: Request instance """ request = Request(method, args, uid, readycb, errorcb) QtCore.QThreadPool.globalInstance().start(request) return request class Request(QtCore.QRunnable): """ A Qt object that represents an asynchronous task :param func method: the method to call :param list args: list of arguments to pass to method :param object uid: a unique identifier (used for verification) :param slot readycb: the callback used when data is receieved :param slot errorcb: the callback used when there is an error The uid param is sent to your error and update callbacks as the first argument. It's there to verify the data you're returning After created it should be used by invoking: .. code-block:: python task = Request(...) QtCore.QThreadPool.globalInstance().start(task) """ INSTANCES = [] FINISHED = [] def __init__(self, method, args, uid, readycb, errorcb=None): super(Request, self).__init__() self.setAutoDelete(True) self.cancelled = False self.method = method self.args = args self.uid = uid self.dataReady = readycb self.dataError = errorcb Request.INSTANCES.append(self) # release all of the finished tasks Request.FINISHED = [] def run(self): """ Method automatically called by Qt when the runnable is ready to run. This will run in a separate thread. """ # this allows us to "cancel" queued tasks if needed, should be done # on shutdown to prevent the app from hanging if self.cancelled: self.cleanup() return # runs in a separate thread, for proper async signal/slot behavior # the object that emits the signals must be created in this thread. # Its not possible to run grabber.moveToThread(QThread.currentThread()) # so to get this QObject to properly exhibit asynchronous # signal and slot behavior it needs to live in the thread that # we're running in, creating the object from within this thread # is an easy way to do that. grabber = Requester() grabber.Loaded.connect(self.dataReady, Qt.QueuedConnection) if self.dataError is not None: grabber.Error.connect(self.dataError, Qt.QueuedConnection) try: result = self.method(*self.args) if self.cancelled: # cleanup happens in 'finally' statement return grabber.Loaded.emit(self.uid, result) except Exception as error: if self.cancelled: # cleanup happens in 'finally' statement return grabber.Error.emit(self.uid, unicode(error)) finally: # this will run even if one of the above return statements # is executed inside of the try/except statement see: # https://docs.python.org/2.7/tutorial/errors.html#defining-clean-up-actions self.cleanup(grabber) def cleanup(self, grabber=None): # remove references to any object or method for proper ref counting self.method = None self.args = None self.uid = None self.dataReady = None self.dataError = None if grabber is not None: grabber.deleteLater() # make sure this python obj gets cleaned up self.remove() def remove(self): try: Request.INSTANCES.remove(self) # when the next request is created, it will clean this one up # this will help us avoid this object being cleaned up # when it's still being used Request.FINISHED.append(self) except ValueError: # there might be a race condition on shutdown, when shutdown() # is called while the thread is still running and the instance # has already been removed from the list return @staticmethod def shutdown(): for inst in Request.INSTANCES: inst.cancelled = True Request.INSTANCES = [] Request.FINISHED = [] class Requester(QtCore.QObject): """ A simple object designed to be used in a separate thread to allow for asynchronous data fetching """ # # Signals # Error = QtCore.pyqtSignal(object, unicode) """ Emitted if the fetch fails for any reason :param unicode uid: an id to identify this request :param unicode error: the error message """ Loaded = QtCore.pyqtSignal(object, object) """ Emitted whenever data comes back successfully :param unicode uid: an id to identify this request :param list data: the json list returned from the GET """ NetworkConnectionError = QtCore.pyqtSignal(unicode) """ Emitted when the task fails due to a network connection error :param unicode message: network connection error message """ def __init__(self, parent=None): super(Requester, self).__init__(parent) class ExampleObject(QtCore.QObject): def __init__(self, parent=None): super(ExampleObject, self).__init__(parent) self.uid = 0 self.request = None def ready_callback(self, uid, result): if uid != self.uid: return print "Data ready from %s: %s" % (uid, result) def error_callback(self, uid, error): if uid != self.uid: return print "Data error from %s: %s" % (uid, error) def fetch(self): if self.request is not None: # cancel any pending requests self.request.cancelled = True self.request = None self.uid += 1 self.request = async(slow_method, ["arg1", "arg2"], self.uid, self.ready_callback, self.error_callback) def slow_method(arg1, arg2): print "Starting slow method" time.sleep(1) return arg1 + arg2 if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) obj = ExampleObject() dialog = QtGui.QDialog() layout = QtGui.QVBoxLayout(dialog) button = QtGui.QPushButton("Generate", dialog) progress = QtGui.QProgressBar(dialog) progress.setRange(0, 0) layout.addWidget(button) layout.addWidget(progress) button.clicked.connect(obj.fetch) dialog.show() app.exec_() app.deleteLater() # avoids some QThread messages in the shell on exit # cancel all running tasks avoid QThread/QTimer error messages # on exit Request.shutdown()
Wenn Sie die Anwendung beenden, sollten Sie sicherstellen, dass Sie alle Aufgaben abbrechen. Andernfalls bleibt die Anwendung hängen, bis alle geplanten Aufgaben abgeschlossen sind
quelle
Basierend auf den in anderen Antworten erwähnten Worker-Objektmethoden habe ich mich entschlossen, zu prüfen, ob ich die Lösung erweitern kann, um mehr Threads aufzurufen - in diesem Fall die optimale Anzahl, die die Maschine ausführen und mehrere Worker mit unbestimmten Abschlusszeiten hochfahren kann. Dazu muss ich noch QThread unterordnen - aber nur, um eine Thread-Nummer zuzuweisen und die Signale "beendet" und "gestartet" neu zu implementieren, um ihre Thread-Nummer einzuschließen.
Ich habe mich ziemlich auf die Signale zwischen der Haupt-GUI, den Threads und den Arbeitern konzentriert.
In ähnlicher Weise war es schwierig, andere Antworten darauf hinzuweisen, dass der QThread nicht erzogen wurde, aber ich denke nicht, dass dies ein echtes Problem ist. Mein Code achtet jedoch auch darauf, die QThread-Objekte zu zerstören.
Die Worker-Objekte konnten jedoch nicht übergeordnet werden, sodass es wünschenswert erscheint, ihnen das deleteLater () -Signal zu senden, entweder wenn die Thread-Funktion beendet oder die GUI zerstört ist. Ich habe meinen eigenen Code hängen lassen, weil ich das nicht getan habe.
Eine weitere Verbesserung, die ich für notwendig hielt, war die Neuimplementierung des closeEvent der GUI (QWidget), sodass die Threads zum Beenden aufgefordert wurden und die GUI dann warten musste, bis alle Threads fertig waren. Als ich mit einigen anderen Antworten auf diese Frage spielte, bekam ich QThread zerstörte Fehler.
Vielleicht ist es für andere nützlich. Ich fand es auf jeden Fall eine nützliche Übung. Vielleicht kennen andere einen besseren Weg, wie ein Thread seine Identität ankündigen kann.
#!/usr/bin/env python3 #coding:utf-8 # Author: --<> # Purpose: To demonstrate creation of multiple threads and identify the receipt of thread results # Created: 19/12/15 import sys from PyQt4.QtCore import QThread, pyqtSlot, pyqtSignal from PyQt4.QtGui import QApplication, QLabel, QWidget, QGridLayout import sys import worker class Thread(QThread): #make new signals to be able to return an id for the thread startedx = pyqtSignal(int) finishedx = pyqtSignal(int) def __init__(self,i,parent=None): super().__init__(parent) self.idd = i self.started.connect(self.starttt) self.finished.connect(self.finisheddd) @pyqtSlot() def starttt(self): print('started signal from thread emitted') self.startedx.emit(self.idd) @pyqtSlot() def finisheddd(self): print('finished signal from thread emitted') self.finishedx.emit(self.idd) class Form(QWidget): def __init__(self): super().__init__() self.initUI() self.worker={} self.threadx={} self.i=0 i=0 #Establish the maximum number of threads the machine can optimally handle #Generally relates to the number of processors self.threadtest = QThread(self) self.idealthreadcount = self.threadtest.idealThreadCount() print("This machine can handle {} threads optimally".format(self.idealthreadcount)) while i <self.idealthreadcount: self.setupThread(i) i+=1 i=0 while i<self.idealthreadcount: self.startThread(i) i+=1 print("Main Gui running in thread {}.".format(self.thread())) def setupThread(self,i): self.worker[i]= worker.Worker(i) # no parent! #print("Worker object runningt in thread {} prior to movetothread".format(self.worker[i].thread()) ) self.threadx[i] = Thread(i,parent=self) # if parent isn't specified then need to be careful to destroy thread self.threadx[i].setObjectName("python thread{}"+str(i)) #print("Thread object runningt in thread {} prior to movetothread".format(self.threadx[i].thread()) ) self.threadx[i].startedx.connect(self.threadStarted) self.threadx[i].finishedx.connect(self.threadFinished) self.worker[i].finished.connect(self.workerFinished) self.worker[i].intReady.connect(self.workerResultReady) #The next line is optional, you may want to start the threads again without having to create all the code again. self.worker[i].finished.connect(self.threadx[i].quit) self.threadx[i].started.connect(self.worker[i].procCounter) self.destroyed.connect(self.threadx[i].deleteLater) self.destroyed.connect(self.worker[i].deleteLater) #This is the key code that actually get the worker code onto another processor or thread. self.worker[i].moveToThread(self.threadx[i]) def startThread(self,i): self.threadx[i].start() @pyqtSlot(int) def threadStarted(self,i): print('Thread {} started'.format(i)) print("Thread priority is {}".format(self.threadx[i].priority())) @pyqtSlot(int) def threadFinished(self,i): print('Thread {} finished'.format(i)) @pyqtSlot(int) def threadTerminated(self,i): print("Thread {} terminated".format(i)) @pyqtSlot(int,int) def workerResultReady(self,j,i): print('Worker {} result returned'.format(i)) if i ==0: self.label1.setText("{}".format(j)) if i ==1: self.label2.setText("{}".format(j)) if i ==2: self.label3.setText("{}".format(j)) if i ==3: self.label4.setText("{}".format(j)) #print('Thread {} has started'.format(self.threadx[i].currentThreadId())) @pyqtSlot(int) def workerFinished(self,i): print('Worker {} finished'.format(i)) def initUI(self): self.label1 = QLabel("0") self.label2= QLabel("0") self.label3= QLabel("0") self.label4 = QLabel("0") grid = QGridLayout(self) self.setLayout(grid) grid.addWidget(self.label1,0,0) grid.addWidget(self.label2,0,1) grid.addWidget(self.label3,0,2) grid.addWidget(self.label4,0,3) #Layout parents the self.labels self.move(300, 150) self.setGeometry(0,0,300,300) #self.size(300,300) self.setWindowTitle('thread test') self.show() def closeEvent(self, event): print('Closing') #this tells the threads to stop running i=0 while i <self.idealthreadcount: self.threadx[i].quit() i+=1 #this ensures window cannot be closed until the threads have finished. i=0 while i <self.idealthreadcount: self.threadx[i].wait() i+=1 event.accept() if __name__=='__main__': app = QApplication(sys.argv) form = Form() sys.exit(app.exec_())
Und der Arbeitercode unten
#!/usr/bin/env python3 #coding:utf-8 # Author: --<> # Purpose: Stack Overflow # Created: 19/12/15 import sys import unittest from PyQt4.QtCore import QThread, QObject, pyqtSignal, pyqtSlot import time import random class Worker(QObject): finished = pyqtSignal(int) intReady = pyqtSignal(int,int) def __init__(self, i=0): '''__init__ is called while the worker is still in the Gui thread. Do not put slow or CPU intensive code in the __init__ method''' super().__init__() self.idd = i @pyqtSlot() def procCounter(self): # This slot takes no params for j in range(1, 10): random_time = random.weibullvariate(1,2) time.sleep(random_time) self.intReady.emit(j,self.idd) print('Worker {0} in thread {1}'.format(self.idd, self.thread().idd)) self.finished.emit(self.idd) if __name__=='__main__': unittest.main()
quelle