Wie interpretiere ich p-Werte von 0 oder 1?

9

Ich habe eine ANOVA durchgeführt, bei der zum Beispiel eine Interaktion zwischen Geschlecht und Klasse festgestellt wurde, als ich wissen möchte, in welchen Klassen sich Jungen und Mädchen unterscheiden, aber in vielen Fällen finde ich (angepasste) p-Werte von 0 und 1. Wie / warum ist das möglich? Scheint nicht richtig ...

as.factor(gender)                     1     16    16.2    2.6377  0.104396    
as.factor(grade)                      7  50077  7153.9 1165.4184 < 2.2e-16 ***
as.factor(gender):as.factor(grade)    7    132    18.9    3.0795  0.003056 ** 
Residuals                          7747  47555     6.1                        
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = rating ~ as.factor(gender) * as.factor(grade), data = users_c[users_c$grade %in% 1:8, ])

$`as.factor(gender)`
           diff        lwr        upr     p adj
m-f -0.09135851 -0.2016276 0.01891058 0.1043964

$`as.factor(grade)`
         diff        lwr       upr     p adj
2-1 0.3823566 -0.5454435  1.310157 0.9169296
3-1 1.9796023  1.1649854  2.794219 0.0000000
4-1 3.9558543  3.1534606  4.758248 0.0000000
5-1 5.7843111  4.9829529  6.585669 0.0000000
6-1 7.0752044  6.2708610  7.879548 0.0000000
7-1 8.4868609  7.6776332  9.296089 0.0000000
8-1 9.3867231  8.5626511 10.210795 0.0000000
3-2 1.5972457  1.0395026  2.154989 0.0000000
4-2 3.5734976  3.0337642  4.113231 0.0000000
5-2 5.4019544  4.8637616  5.940147 0.0000000
6-2 6.6928478  6.1502200  7.235476 0.0000000
7-2 8.1045042  7.5546625  8.654346 0.0000000
8-2 9.0043665  8.4329024  9.575831 0.0000000
4-3 1.9762520  1.6694948  2.283009 0.0000000
5-3 3.8047088  3.5006705  4.108747 0.0000000
6-3 5.0956021  4.7837806  5.407424 0.0000000
7-3 6.5072586  6.1830461  6.831471 0.0000000
8-3 7.4071208  7.0474558  7.766786 0.0000000
5-4 1.8284568  1.5588754  2.098038 0.0000000
6-4 3.1193501  2.8410202  3.397680 0.0000000
7-4 4.5310066  4.2388618  4.823151 0.0000000
8-4 5.4308688  5.0998193  5.761918 0.0000000
6-5 1.2908933  1.0155630  1.566224 0.0000000
7-5 2.7025498  2.4132612  2.991838 0.0000000
8-5 3.6024120  3.2738803  3.930944 0.0000000
7-6 1.4116565  1.1141985  1.709114 0.0000000
8-6 2.3115187  1.9757711  2.647266 0.0000000
8-7 0.8998622  0.5525763  1.247148 0.0000000

$`as.factor(gender):as.factor(grade)`
                diff         lwr        upr     p adj
m:1-f:1  0.005917865 -1.77842639  1.7902621 1.0000000
f:2-f:1  0.318074165 -1.28953805  1.9256864 0.9999988
m:2-f:1  0.442924925 -1.11597060  2.0018205 0.9998619
f:3-f:1  1.769000750  0.35262166  3.1853798 0.0020136
m:3-f:1  2.174229216  0.76569156  3.5827669 0.0000147
f:4-f:1  3.738998543  2.34268666  5.1353104 0.0000000
m:4-f:1  4.163719997  2.77146170  5.5559783 0.0000000
f:5-f:1  5.769586591  4.37599400  7.1631792 0.0000000
m:5-f:1  5.816721075  4.42497532  7.2084668 0.0000000
f:6-f:1  7.169439003  5.77317769  8.5657003 0.0000000
m:6-f:1  7.000924045  5.60308216  8.3987659 0.0000000
f:7-f:1  8.330142924  6.92683436  9.7334515 0.0000000
m:7-f:1  8.674488370  7.26930678 10.0796700 0.0000000
f:8-f:1  9.535307293  8.11198164 10.9586329 0.0000000
m:8-f:1  9.251081088  7.82191240 10.6802498 0.0000000
f:2-m:1  0.312156300 -1.12690148  1.7512141 0.9999959
m:2-m:1  0.437007060 -0.94741539  1.8214295 0.9995001
f:3-m:1  1.763082885  0.54136279  2.9848030 0.0000892
m:3-m:1  2.168311350  0.95569081  3.3809319 0.0000001
f:4-m:1  3.733080678  2.53468294  4.9314784 0.0000000
m:4-m:1  4.157802132  2.96412989  5.3514744 0.0000000
f:5-m:1  5.763668726  4.56844048  6.9588970 0.0000000
m:5-m:1  5.810803210  4.61772882  7.0038776 0.0000000
f:6-m:1  7.163521138  5.96518233  8.3618599 0.0000000
m:6-m:1  6.995006180  5.79482611  8.1951862 0.0000000
f:7-m:1  8.324225059  7.11768240  9.5307677 0.0000000
m:7-m:1  8.668570505  7.45984987  9.8772911 0.0000000
f:8-m:1  9.529389428  8.29962271 10.7591561 0.0000000
m:8-m:1  9.245163223  8.00863850 10.4816879 0.0000000
m:2-f:2  0.124850760 -1.02282435  1.2725259 1.0000000
f:3-f:2  1.450926585  0.50586965  2.3959835 0.0000172
m:3-f:2  1.856155050  0.92289131  2.7894188 0.0000000
f:4-f:2  3.420924378  2.50621691  4.3356318 0.0000000
m:4-f:2  3.845645832  2.93713824  4.7541534 0.0000000
f:5-f:2  5.451512425  4.54096139  6.3620635 0.0000000
m:5-f:2  5.498646910  4.59092496  6.4063689 0.0000000
f:6-f:2  6.851364838  5.93673457  7.7659951 0.0000000
m:6-f:2  6.682849880  5.76580854  7.5998912 0.0000000
f:7-f:2  8.012068759  7.08671595  8.9374216 0.0000000
m:7-f:2  8.356414205  7.42822339  9.2846050 0.0000000
f:8-f:2  9.217233128  8.26179669 10.1726696 0.0000000
m:8-f:2  8.933006923  7.96888762  9.8971262 0.0000000
f:3-m:2  1.326075825  0.46649985  2.1856518 0.0000150
m:3-m:2  1.731304290  0.88471145  2.5778971 0.0000000
f:4-m:2  3.296073618  2.46998162  4.1221656 0.0000000
m:4-m:2  3.720795071  2.90157332  4.5400168 0.0000000
f:5-m:2  5.326661665  4.50517434  6.1481490 0.0000000
m:5-m:2  5.373796150  4.55544575  6.1921465 0.0000000
f:6-m:2  6.726514078  5.90050756  7.5525206 0.0000000
m:6-m:2  6.557999120  5.72932364  7.3866746 0.0000000
f:7-m:2  7.887217999  7.04935402  8.7250820 0.0000000
m:7-m:2  8.231563445  7.39056617  9.0725607 0.0000000
f:8-m:2  9.092382368  8.22140761  9.9633571 0.0000000
m:8-m:2  8.808156163  7.92766524  9.6886471 0.0000000
m:3-f:3  0.405228465 -0.13578346  0.9462404 0.4221367
f:4-f:3  1.969997793  1.46166478  2.4783308 0.0000000
m:4-f:3  2.394719246  1.89762897  2.8918095 0.0000000
f:5-f:3  4.000585840  3.49977062  4.5014011 0.0000000
m:5-f:3  4.047720325  3.55206739  4.5433733 0.0000000
f:6-f:3  5.400438253  4.89224417  5.9086323 0.0000000
m:6-f:3  5.231923295  4.71940255  5.7444440 0.0000000
f:7-f:3  6.561142174  6.03389412  7.0883902 0.0000000
m:7-f:3  6.905487620  6.37327442  7.4377008 0.0000000
f:8-f:3  7.766306543  7.18788499  8.3447281 0.0000000
m:8-f:3  7.482080337  6.88942637  8.0747343 0.0000000
f:4-m:3  1.564769328  1.07871270  2.0508260 0.0000000
m:4-m:3  1.989490781  1.51520464  2.4637769 0.0000000
f:5-m:3  3.595357375  3.11716862  4.0735461 0.0000000
m:5-m:3  3.642491860  3.16971239  4.1152713 0.0000000
f:6-m:3  4.995209787  4.50929846  5.4811211 0.0000000
m:6-m:3  4.826694830  4.33626022  5.3171294 0.0000000
f:7-m:3  6.155913709  5.65010831  6.6617191 0.0000000
m:7-m:3  6.500259155  5.98928021  7.0112381 0.0000000
f:8-m:3  7.361078078  6.80213257  7.9200236 0.0000000
m:8-m:3  7.076851872  6.50319055  7.6505132 0.0000000
m:4-f:4  0.424721453 -0.01192015  0.8613631 0.0668946
f:5-f:4  2.030588047  1.58971048  2.4714656 0.0000000
m:5-f:4  2.077722532  1.64271796  2.5127271 0.0000000
f:6-f:4  3.430440460  2.98119847  3.8796825 0.0000000
m:6-f:4  3.261925502  2.80779484  3.7160562 0.0000000
f:7-f:4  4.591144381  4.12045589  5.0618329 0.0000000
m:7-f:4  4.935489827  4.45924616  5.4117335 0.0000000
f:8-f:4  5.796308750  5.26892973  6.3236878 0.0000000
m:8-f:4  5.512082545  4.96913148  6.0550336 0.0000000
f:5-m:4  1.605866594  1.17800058  2.0337326 0.0000000
m:5-m:4  1.653001078  1.23118920  2.0748130 0.0000000
f:6-m:4  3.005719006  2.56923916  3.4421989 0.0000000
m:6-m:4  2.837204048  2.39569420  3.2787139 0.0000000
f:7-m:4  4.166422928  3.70789927  4.6249466 0.0000000
m:7-m:4  4.510768373  4.04654394  4.9749928 0.0000000
f:8-m:4  5.371587296  4.85503631  5.8881383 0.0000000
m:8-m:4  5.087361091  4.55492128  5.6198009 0.0000000
m:5-f:5  0.047134485 -0.37906079  0.4733298 1.0000000
f:6-f:5  1.399852412  0.95913504  1.8405698 0.0000000
m:6-f:5  1.231337454  0.78563790  1.6770370 0.0000000
f:7-f:5  2.560556334  2.09799705  3.0231156 0.0000000
m:7-f:5  2.904901779  2.43669086  3.3731127 0.0000000
f:8-f:5  3.765720703  3.24558412  4.2858573 0.0000000
m:8-f:5  3.481494497  2.94557538  4.0174136 0.0000000
f:6-m:5  1.352717928  0.91787572  1.7875601 0.0000000
m:6-m:5  1.184202970  0.74431204  1.6240939 0.0000000
f:7-m:5  2.513421849  2.05645683  2.9703869 0.0000000
m:7-m:5  2.857767295  2.39508230  3.3204523 0.0000000
f:8-m:5  3.718586218  3.20341827  4.2337542 0.0000000
m:8-m:5  3.434360013  2.90326187  3.9654582 0.0000000
m:6-f:6 -0.168514958 -0.62249009  0.2854602 0.9968060
f:7-f:6  1.160703921  0.69016548  1.6312424 0.0000000
m:7-f:6  1.505049367  1.02895400  1.9811447 0.0000000
f:8-f:6  2.365868290  1.83862318  2.8931134 0.0000000
m:8-f:6  2.081642085  1.53882109  2.6244631 0.0000000
f:7-m:6  1.329218879  0.85401081  1.8044269 0.0000000
m:7-m:6  1.673564325  1.19285330  2.1542753 0.0000000
f:8-m:6  2.534383248  2.00296656  3.0657999 0.0000000
m:8-m:6  2.250157043  1.70328327  2.7970308 0.0000000
m:7-f:7  0.344345446 -0.15203755  0.8407284 0.5648416
f:8-f:7  1.205164369  0.65953016  1.7507986 0.0000000
m:8-f:7  0.920938164  0.36023867  1.4816377 0.0000022
f:8-m:7  0.860818923  0.31038540  1.4112524 0.0000101
m:8-m:7  0.576592718  0.01122178  1.1419637 0.0401330
m:8-f:8 -0.284226205 -0.89329509  0.3248427 0.9688007

quelle
7747 verbleibende Freiheitsgrade sind viel; Ist es möglich, dass Ihr Datensatz mehrere Antworten pro Person hat? In diesem Fall möchten Sie möglicherweise entweder die Antworten jeder Person auf einen Mittelwert reduzieren (automatisch von ezANOVA aus dem ez-Paket erstellt) oder Modelle mit gemischten Effekten verwenden, mit denen Sie die wiederholten Messungen berücksichtigen können (siehe ezMixed from) das ez-Paket).
Mike Lawrence
Ich wollte sagen "oder etwas Stärkeres wie Modelle mit gemischten Effekten verwenden". Für die neueste Version des ezMixed-Codes (der eine leistungsstarke Auswertung möglicherweise nichtlinearer Effekte kontinuierlicher Variablen wie Grade sowie die Visualisierung über ezPlot2 ermöglicht) können Sie diese ezDev-Funktion auch mit dem Internet verbinden: raw.github .com / mike-lawrence / ez / master / R / ezDev.R
Mike Lawrence

Antworten:

15

Alles, was 0 und 1 bedeuten, ist, dass sie sehr, sehr nahe an 0 oder 1 liegen. Wenn Sie genau hinschauen, werden Sie feststellen, dass der Effekt fast 0 ist, wenn das angepasste p 1 ist, und wenn das angepasste p 0 ist, die nähere Grenze der Wirkung ist sehr weit weg. Daher ist an sich nichts "falsch". Schauen Sie sich nun an, wie viele signifikante Ziffern Sie haben. Die 1 oder 0 bedeutet nur, dass sie näher an diesem Wert liegt, als durch eine Zahl mit so vielen Ziffern dargestellt werden kann. Fühlen Sie sich frei, etwas wie <0,0001 oder> 0,9999 zu melden.

John
quelle
+1 - Dies sind nur beliebige Rundungsschwellen. Und einer der Gründe, warum ich die auf Signifikanz basierende Berichterstattung wirklich hasse.
Fomite
3
Bei dieser großen Stichprobengröße ist es nicht überraschend, wirklich kleine p-Werte zu finden. Ich denke, dies wirft hier die Frage nach der praktischen und statistischen Signifikanz auf, und ich würde mich mehr für die Konfidenzintervalle als für p-Werte interessieren.
Glen
@ John, meinst du damit, dass es ein Problem mit der Meldung eines p-Werts von 1,00 oder 1.000 geben würde? Ich würde nichts Falsches daran sehen.
Mark999
Glen, ich stimme zu ...
John
mark999, dann solltest du sie so melden. Das einzige Problem, das ich damit haben würde, ist, dass solche Zahlen dazu neigen, speziell interpretiert zu werden. Wir alle wissen, dass jeder Wert eine Schätzung wäre, aber 1,0 und 0,0 könnten für statistische Anfänger genauso speziell oder verwirrend sein wie für diesen Fragesteller. Die Verwirrung, die diese Frage aufwirft, würde dann bei den Lesern des Berichts liegen.
John