Dies ist mein Datenrahmen:
Group <- c("G1","G1","G1","G1","G1","G1","G1","G1","G1","G1","G1","G1","G1","G1","G1","G2","G2","G2","G2","G2","G2","G2","G2","G2","G2","G2","G2","G2","G2","G2","G3","G3","G3","G3","G3","G3","G3","G3","G3","G3","G3","G3","G3","G3","G3")
Subject <- c("S1","S2","S3","S4","S5","S6","S7","S8","S9","S10","S11","S12","S13","S14","S15","S1","S2","S3","S4","S5","S6","S7","S8","S9","S10","S11","S12","S13","S14","S15","S1","S2","S3","S4","S5","S6","S7","S8","S9","S10","S11","S12","S13","S14","S15")
Value <- c(9.832217741,13.62390117,13.19671612,14.68552076,9.26683366,11.67886655,14.65083473,12.20969772,11.58494621,13.58474896,12.49053635,10.28208078,12.21945867,12.58276212,15.42648969,9.466436017,11.46582655,10.78725485,10.66159358,10.86701127,12.97863424,12.85276916,8.672953949,10.44587257,13.62135205,13.64038394,12.45778874,8.655142642,10.65925259,13.18336949,11.96595556,13.5552118,11.8337142,14.01763101,11.37502161,14.14801305,13.21640866,9.141392359,11.65848845,14.20350364,14.1829714,11.26202565,11.98431285,13.77216009,11.57303893)
data <- data.frame(Group, Subject, Value)
Dann führe ich ein linear gemischtes Effektmodell aus, um die Differenz der 3 Gruppen zu "Value" zu vergleichen, wobei "Subject" der Zufallsfaktor ist:
library(lme4)
library(lmerTest)
model <- lmer (Value~Group + (1|Subject), data = data)
summary(model)
Die Ergebnisse sind:
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 12.48771 0.42892 31.54000 29.114 <2e-16 ***
GroupG2 -1.12666 0.46702 28.00000 -2.412 0.0226 *
GroupG3 0.03828 0.46702 28.00000 0.082 0.9353
Wie kann man jedoch Gruppe2 mit Gruppe3 vergleichen? Was ist die Konvention in wissenschaftlichen Artikeln?
Nachdem Sie Ihr
lmer
Modell angepasst haben, können Sie ANOVA, MANOVA und mehrere Vergleichsverfahren für das Modellobjekt ausführen.Was die Konvention in akademischen Veröffentlichungen betrifft, so wird dies je nach Fachgebiet, Zeitschrift und spezifischem Thema sehr unterschiedlich sein. In diesem Fall lesen Sie einfach die zugehörigen Artikel und sehen Sie, was sie tun.
quelle
summary(glht(model, linfct = mcp(Group = "Tukey")))
. Wenn Sie die vollständigen akademischen / statistischen Beschreibungen der verschiedenen Tests sehen möchten, die durchgeführt werden können, lesen Sie die Referenzen in?glht
undmulticomp
allgemeiner. Ich denke, Hsu 1996 wäre das wichtigste.mcp
Funktion, dieGroup = Tukey
nur bedeutet, alle paarweisen Gruppen in der Variablen "Group" zu vergleichen. Dies bedeutet keine Tukey-Anpassung.