Keras: Warum nimmt der Verlust ab, während val_loss zunimmt?

12

Ich habe eine Rastersuche für eine Reihe von Parametern eingerichtet. Ich versuche, die besten Parameter für ein neuronales Keras-Netz zu finden, das eine binäre Klassifizierung durchführt. Die Ausgabe ist entweder eine 1 oder eine 0. Es gibt ungefähr 200 Funktionen. Als ich eine Rastersuche durchführte, bekam ich eine Reihe von Modellen und deren Parameter. Das beste Modell hatte diese Parameter:

Epochs           : 20
Batch Size       : 10
First Activation : sigmoid
Learning Rate    : 1
First Init       : uniform

und die Ergebnisse für dieses Modell waren:

        loss       acc  val_loss   val_acc
1   0.477424  0.768542  0.719960  0.722550
2   0.444588  0.788861  0.708650  0.732130
3   0.435809  0.794336  0.695768  0.732682
4   0.427056  0.798784  0.684516  0.721137
5   0.420828  0.803048  0.703748  0.720707
6   0.418129  0.806206  0.730803  0.723717
7   0.417522  0.805206  0.778434  0.721936
8   0.415197  0.807549  0.802040  0.733849
9   0.412922  0.808865  0.823036  0.731761
10  0.410463  0.810654  0.839087  0.730410
11  0.407369  0.813892  0.831844  0.725252
12  0.404436  0.815760  0.835217  0.723102
13  0.401728  0.816287  0.845178  0.722488
14  0.399623  0.816471  0.842231  0.717514
15  0.395746  0.819498  0.847118  0.719541
16  0.393361  0.820366  0.858291  0.714873
17  0.390947  0.822025  0.850880  0.723348
18  0.388478  0.823341  0.858591  0.721014
19  0.387062  0.822735  0.862971  0.721936
20  0.383744  0.825762  0.880477  0.721322

Also habe ich dieses Modell mit mehr Epochen (150 davon) wiederholt und dies sind die Ergebnisse, die ich erhalten habe. Ich bin mir nicht sicher, warum das passiert, ist das normal oder was mache ich falsch?

Darstellung des Verlustes acc, val_locc und val_acc

         loss       acc  val_loss   val_acc
1    0.476387  0.769279  0.728492  0.722550
2    0.442604  0.789941  0.701136  0.730472
3    0.431936  0.796915  0.676995  0.723655
4    0.426349  0.800258  0.728562  0.721997
5    0.421143  0.803653  0.739789  0.716900
6    0.416389  0.807575  0.720850  0.711373
7    0.413163  0.809154  0.751340  0.718128
8    0.409013  0.811418  0.780856  0.723409
9    0.405871  0.813576  0.789046  0.719295
10   0.402579  0.815524  0.804526  0.720278
11   0.400152  0.816813  0.811905  0.719541
12   0.400304  0.817261  0.787449  0.713154
13   0.397917  0.817945  0.804222  0.721567
14   0.395266  0.819524  0.801722  0.723348
15   0.393957  0.820156  0.793889  0.719049
16   0.391780  0.821103  0.794179  0.721199
17   0.390206  0.822393  0.806803  0.722611
18   0.388075  0.823604  0.817850  0.723901
19   0.385985  0.824762  0.841883  0.722058
20   0.383762  0.826867  0.857071  0.720830
21   0.381493  0.827947  0.864432  0.718005
22   0.379520  0.829210  0.872835  0.720400
23   0.377488  0.830526  0.879962  0.721383
24   0.375619  0.830736  0.887850  0.723839
25   0.373684  0.832000  0.891267  0.724822
26   0.372023  0.832368  0.891562  0.724638
27   0.370155  0.833184  0.892528  0.724883
28   0.368511  0.834684  0.887061  0.724699
29   0.366522  0.835606  0.883541  0.724883
30   0.364500  0.836422  0.882823  0.724515
31   0.362612  0.836737  0.882611  0.722427
32   0.360742  0.837448  0.884282  0.720769
33   0.359093  0.838738  0.884339  0.719418
34   0.357436  0.839080  0.888006  0.716470
35   0.355723  0.840633  0.892658  0.713830
36   0.354305  0.840764  0.897303  0.710575
37   0.352758  0.841343  0.901147  0.709408
38   0.351414  0.842054  0.899546  0.707934
39   0.349619  0.843370  0.905133  0.704864
40   0.347993  0.844475  0.910400  0.701363
41   0.346402  0.845581  0.915086  0.699337
42   0.345014  0.845818  0.918697  0.697617
43   0.343708  0.846607  0.923413  0.695652
44   0.342335  0.847292  0.930816  0.693441
45   0.340745  0.848081  0.940737  0.689020
46   0.339623  0.848713  0.948633  0.685274
47   0.338846  0.849845  0.952492  0.683923
48   0.337724  0.850134  0.961147  0.683984
49   0.336247  0.850976  0.967792  0.683309
50   0.334444  0.851529  0.984107  0.680238
51   0.333086  0.852029  1.001179  0.678273
52   0.331756  0.853240  1.016130  0.674589
53   0.330738  0.854003  1.024875  0.673606
54   0.329548  0.854030  1.040597  0.670044
55   0.328813  0.855372  1.041871  0.668509
56   0.327120  0.855898  1.050617  0.668755
57   0.325962  0.855819  1.064525  0.666667
58   0.324602  0.856898  1.078078  0.662859
59   0.323560  0.857241  1.085016  0.661938
60   0.322243  0.858662  1.093114  0.661140
61   0.320680  0.858872  1.117269  0.656841
62   0.319267  0.860004  1.138825  0.654815
63   0.318132  0.860636  1.154959  0.653648
64   0.316956  0.861531  1.180216  0.649718
65   0.315543  0.862320  1.198216  0.648428
66   0.314405  0.862610  1.218663  0.647384
67   0.313501  0.863873  1.245123  0.644252
68   0.312513  0.864558  1.262998  0.643147
69   0.311567  0.865347  1.283213  0.641918
70   0.310069  0.866505  1.302089  0.640752
71   0.309087  0.866611  1.318972  0.641857
72   0.307767  0.867321  1.361531  0.638787
73   0.306750  0.866742  1.382162  0.638357
74   0.305760  0.867242  1.378694  0.641611
75   0.305289  0.867769  1.393187  0.642594
76   0.304089  0.868479  1.435852  0.635532
77   0.302472  0.869006  1.435019  0.639892
78   0.301118  0.869400  1.447060  0.639216
79   0.300629  0.870058  1.488730  0.634918
80   0.299364  0.870295  1.488376  0.636576
81   0.298380  0.870822  1.504260  0.634611
82   0.297253  0.871664  1.525655  0.634058
83   0.296760  0.871875  1.538717  0.632891
84   0.295502  0.872585  1.551178  0.633751
85   0.294569  0.872927  1.562323  0.633137
86   0.294780  0.872585  1.555390  0.629944
87   0.293796  0.872743  1.587800  0.627057
88   0.293029  0.873427  1.608010  0.627549
89   0.291822  0.874006  1.626047  0.627303
90   0.290643  0.874533  1.651658  0.626689
91   0.289920  0.875270  1.681202  0.623925
92   0.289661  0.875375  1.683188  0.626505
93   0.288103  0.876323  1.706517  0.625031
94   0.287917  0.876770  1.722031  0.624417
95   0.287020  0.877270  1.743283  0.624478
96   0.286750  0.877639  1.762506  0.624048
97   0.285712  0.877481  1.780433  0.622267
98   0.284635  0.878639  1.789917  0.622206
99   0.283627  0.879191  1.862468  0.616925
100  0.282214  0.879455  1.915643  0.612810
101  0.281749  0.879244  1.881444  0.615205
102  0.281710  0.879639  1.916390  0.614223
103  0.280293  0.880350  1.938470  0.612810
104  0.279233  0.881008  1.979127  0.609187
105  0.279204  0.880297  1.997384  0.606546
106  0.278264  0.881876  2.009851  0.607652
107  0.277511  0.882876  2.038530  0.606116
108  0.277521  0.881771  2.034664  0.604888
109  0.276264  0.882534  2.058179  0.604827
110  0.275230  0.883587  2.078912  0.604274
111  0.275147  0.883034  2.073272  0.603537
112  0.273717  0.883797  2.100150  0.600958
113  0.273372  0.883692  2.114416  0.601634
114  0.272626  0.883692  2.129778  0.601941
115  0.272001  0.883929  2.138462  0.601326
116  0.271344  0.884508  2.148771  0.602923
117  0.270134  0.884692  2.115114  0.604581
118  0.269494  0.885140  2.135719  0.603107
119  0.268803  0.885587  2.162380  0.601695
120  0.268593  0.886219  2.183793  0.599239
121  0.267141  0.886035  2.195810  0.600221
122  0.266565  0.886772  2.192426  0.600528
123  0.265715  0.886561  2.260088  0.596598
124  0.264788  0.887693  2.253029  0.597335
125  0.263643  0.887693  2.289285  0.597028
126  0.263612  0.887956  2.311600  0.596536
127  0.261996  0.888588  2.339754  0.595063
128  0.263069  0.887588  2.364881  0.594449
129  0.261684  0.889272  2.321568  0.596598
130  0.261304  0.889509  2.389324  0.591562
131  0.260336  0.889640  2.403542  0.593098
132  0.259131  0.890272  2.413964  0.592115
133  0.258756  0.890193  2.422454  0.591992
134  0.257794  0.891009  2.454598  0.591255
135  0.257187  0.891009  2.459366  0.590088
136  0.257249  0.891088  2.448625  0.591624
137  0.256344  0.891404  2.495104  0.589167
138  0.255590  0.891720  2.495032  0.589781
139  0.254596  0.892299  2.496050  0.589229
140  0.254308  0.892588  2.510471  0.589536
141  0.253694  0.892509  2.519580  0.589720
142  0.252973  0.893088  2.527464  0.590273
143  0.252714  0.893194  2.553902  0.589106
144  0.252190  0.893720  2.536494  0.590457
145  0.251870  0.893352  2.553102  0.588799
146  0.250437  0.893694  2.565141  0.589597
147  0.250066  0.894141  2.575599  0.588553
148  0.249596  0.894273  2.590722  0.588123
149  0.248569  0.894983  2.596031  0.588676
150  0.248096  0.895273  2.602810  0.588860
user1367204
quelle
Ihr Fall ist seltsam, weil Ihr Validierungsverlust nie kleiner wurde. Ihre Lernrate ist verdächtig hoch, typische Lernraten liegen bei 0,001. Welchen Bereich von Lernraten haben Sie bei der Rastersuche verwendet?
Hugh
1
Ich habe [1.000, 0.100, 0.010, 0.001]
user1367204
Dies kann etwas spät sein, aber sind Sie sicher, dass Ihre Daten so sind, wie Sie denken? Insbesondere ist es sehr seltsam, dass Ihre Validierungsgenauigkeit stagniert, während der Validierungsverlust zunimmt, da sich diese beiden Werte immer zusammen bewegen sollten, z. Die Abnahme des Verlustwertes sollte mit einer proportionalen Erhöhung der Genauigkeit verbunden sein. Sie können das bei Trainingsverlust sehen. Wenn der Trainingsverlust abnimmt, nimmt auch die Genauigkeit zu. Dies ist jedoch bei den vorhandenen Validierungsdaten nicht der Fall. Daher würde ich auf jeden Fall untersuchen, wie Sie Validierungsverlust und ac
matt_m

Antworten:

16

(Dies kann ein Duplikat sein.) Es sieht so aus, als ob Ihr Modell überpasst ist und nur die Trainingsdaten speichert. Im Allgemeinen kann ein Modell, das überpasst, verbessert werden, indem mehr Aussetzer hinzugefügt oder ein größerer Datensatz trainiert und validiert wird. Erklären Sie mehr über die Daten / Funktionen und das Modell für weitere Ideen.

photox
quelle
3
Es ist eine sehr eigenartige Überanpassung. val_loss nimmt niemals ab, als ob es vor Beginn der Überanpassung keine Anpassung gegeben hätte. Wissen Sie, was das erklären könnte?
Hugh
3

Möglicherweise hat Ihr Trainingsdatensatz andere Eigenschaften als Ihr Validierungsdatensatz. Es ist, als würde man ein Netzwerk trainieren, um zwischen einem Huhn und einem Flugzeug zu unterscheiden, aber dann zeigt man ihm einen Apfel. Je mehr Sie es trainieren, desto besser kann es Hühner von Flugzeugen unterscheiden, aber desto schlechter ist es, wenn ihm ein Apfel gezeigt wird. Ich habe die gleiche Situation und denke darüber nach, ein generatives kontradiktorisches Netzwerk zu verwenden, um festzustellen, ob ein Validierungsdatenpunkt dem Trainingsdatensatz "fremd" ist oder nicht

Shadi
quelle