Erklären Sie kurz, was mit Interpolation gemeint ist. Inwiefern hängt das mit dem Konzept der Regression zusammen?
Interpolation ist die Kunst des Lesens zwischen den Zeilen einer Tabelle, und in der Elementarmathematik bezeichnet der Begriff gewöhnlich den Prozess des Berechnens der Zwischenwerte einer Funktion aus einer Menge gegebener oder tabellarischer Werte dieser Funktion.
Ich kann die zweite Frage nicht beantworten. Bitte helfen Sie
Antworten:
Der Hauptunterschied zwischen Interpolation und Regression ist die Definition des Problems, das sie lösen.
Wenn Sie Datenpunkte angeben, suchen Sie beim Interpolieren nach einer Funktion mit einer vordefinierten Form, deren Werte genau den angegebenen entsprechen. Das bedeutet, dass Sie bei gegebenen Paaren ( x i , y i ) nach F einer vordefinierten Form suchen , die F ( x i ) = y i erfüllt . Ich denke, am häufigsten wird F als Polynom, Spline (Polynome niedrigen Grades in Intervallen zwischen gegebenen Punkten) gewählt.n ( xich, yich) F F( xich) = yich F
Wenn Sie eine Regression durchführen, suchen Sie nach einer Funktion, die einige Kosten minimiert, normalerweise die Summe der Fehlerquadrate. Sie benötigen die Funktion nicht, um die genauen Werte an bestimmten Punkten zu haben, Sie möchten nur eine gute Annäherung. Im Allgemeinen erfüllt Ihre gefundene Funktion möglicherweise nicht F ( x i ) = y i für einen Datenpunkt, aber die Kostenfunktion, dh ∑ n i = 1 ( F ( x i ) - y i ) 2 , ist die kleinstmögliche aller Funktionen der gegebenen Form.F F( xich) = yich ∑ni = 1( F( xich) - yich)2
Ein gutes Beispiel dafür, warum Sie nur approximieren statt interpolieren möchten, sind die Kurse an der Börse. Sie können Preise in einigen letzten Zeiteinheiten nehmen und versuchen, sie zu interpolieren, um eine Vorhersage des Preises in der nächsten Zeiteinheit zu erhalten. Dies ist eher eine schlechte Idee, denn es gibt keinen Grund zu der Annahme, dass die Beziehungen zwischen den Preisen durch ein Polynom genau ausgedrückt werden können. Aber eine lineare Regression könnte den Trick machen, da die Kurse eine gewisse "Steigung" aufweisen und eine lineare Funktion zumindest lokal eine gute Annäherung sein könnte (Hinweis: Es ist nicht so einfach, aber eine Regression ist definitiv eine bessere Idee als eine Interpolation in diesem Fall ).k
quelle
Die beiden vorherigen Antworten haben die Beziehung zwischen linearer Interpolation und linearer Regression (oder sogar allgemeiner Interpolation und polynomialer Regression) erklärt. Eine wichtige Verbindung ist jedoch, dass Sie nach dem Anpassen eines Regressionsmodells damit zwischen den angegebenen Datenpunkten interpolieren können.
quelle
Hoffentlich kommt dies mit einem einfachen Beispiel und einer Visualisierung recht schnell.
Angenommen, Sie haben die folgenden Daten:
Wir können Regression verwenden, um Y als Antwort auf X zu modellieren. Verwenden von R:
lm(y ~ x)
Die Ergebnisse sind ein Achsenabschnitt von 5 und ein Koeffizient für x von 1. Dies bedeutet, dass ein beliebiges Y für ein gegebenes X als X + 5 berechnet werden kann. Als Bild können Sie dies folgendermaßen sehen:
Beachten Sie, dass Sie einen Wert erhalten können, unabhängig davon, ob ich einen Wertpunkt für angegeben habe oder nicht, wenn Sie an einer beliebigen Stelle entlang der X-Achse eine Linie bis zur angepassten Linie und dann eine Linie über die Y-Achse gezogen haben Y. Die Regression glättet Bereiche ohne Daten, indem die zugrunde liegende Beziehung geschätzt wird.
quelle
Der grundlegende Unterschied zwischen s / w-Interpolation und Regression lautet wie folgt: Interpolation: Angenommen, es gibt n Punkte (z. B. 10 Datenpunkte). Bei der Interpolation wird die Kurve, die durch alle Datenpunkte (hier 10 Datenpunkte) verläuft, mit a angepasst Grad des Polynoms (Anzahl der Datenpunkte -1; hier ist es 9). Wie bei der Regression werden nicht alle Datenpunkte nur für die Kurvenanpassung benötigt.
Im Allgemeinen ist die Reihenfolge von Interpolation und Regression (1, 2 oder 3). Wenn die Reihenfolge größer als 3 ist, werden mehr Oszillationen in der Kurve sichtbar.
quelle
Regression ist der Prozess, um die Linie der besten Anpassung zu finden [1]. Bei der Interpolation wird der Wert einer Variablen anhand der Best-Fit-Linie aus dem Wert einer anderen Variablen geschätzt, vorausgesetzt, der von Ihnen verwendete Wert liegt im Bereich Ihrer Daten. Wenn es außerhalb des Bereichs liegt, würden Sie Extrapolation [1] verwenden.
[1] http://mathhelpforum.com/advanced-applied-math/182558-interpolation-vs-regression.html
quelle
Bei Interpolation oder Spline-Anpassung erhalten wir numerische Daten (interpoliert zwischen jedem Paar von Originaldaten) von größerer Größe, die beim Zeichnen den Effekt einer glatten Kurve erzeugen. Tatsächlich wird zwischen jedem Paar von Originaldaten ein anderes Polynom angepasst, daher ist die gesamte Kurve nach der Interpolation eine stückweise kontinuierliche Kurve, wobei jedes Stück aus einem anderen Polynom gebildet wird.
Wenn nach einer parametrischen Darstellung der ursprünglichen numerischen Daten gesucht wird, muss eine Regression durchgeführt werden. Sie können auch versuchen, ein hochgradiges Polynom an den Spline anzupassen. In jedem Fall wird die Darstellung eine Annäherung sein. Sie können auch überprüfen, wie genau die Annäherung ist.
quelle
Sowohl die Regression als auch die Interpolation werden verwendet, um Werte einer Variablen (Y) für einen gegebenen Wert einer anderen Variablen (X) vorherzusagen. In der Regression können wir jeden Wert der abhängigen Variablen (Y) für einen gegebenen Wert der unabhängigen Variablen (X) vorhersagen, auch wenn er außerhalb des tabellarischen Wertebereichs liegt. Bei der Interpolation können wir jedoch nur die Werte der abhängigen Variablen vorhersagen (Y) für einen Wert der unabhängigen Variablen (X), der innerhalb des Bereichs gegebener Werte von X liegt.
quelle
Bei der Interpolation wird eine Anzahl von Punkten zwischen x = a und x = b genau an ein Interpolationspolynom angepasst. Die Interpolation kann verwendet werden, um den ungefähren Wert (oder den fehlenden Wert) von y in der Domäne x = [a, b] mit einer besseren Genauigkeit als die Regressionstechnik zu finden.
Andererseits ist die Regression ein Prozess, bei dem eine Anzahl von Punkten an eine Kurve angepasst wird, die mit einem minimalen Fehlerquadrat durch oder in der Nähe der Punkte verläuft. Die Regression approximiert den Wert von y in der Domäne x = [a, b] nicht so genau wie die Interpolation. Die Regression liefert jedoch bessere Vorhersagen als die Interpolation für die Werte von y in der Domäne zwischen x = (- unendlich, a) und x = ( b, + unendlich).
Zusammenfassend bietet die Interpolation eine bessere Genauigkeit des Werts von y innerhalb der Domäne eines bekannten x-Bereichs, während die Regression bessere Vorhersagen von y in der Domäne unterhalb und außerhalb des bekannten Bereichs von x liefert.
quelle