KNN Imputation R-Pakete

14

Ich suche ein KNN-Anrechnungspaket. Ich habe mir das Imputationspaket angesehen ( http://cran.r-project.org/web/packages/imputation/imputation.pdf) ) angesehen, aber aus irgendeinem Grund scheint die KNN-Impute-Funktion (auch wenn dem Beispiel aus der Beschreibung folge) nur zu funktionieren Nullwerte zu unterstellen (wie unten). Ich habe mich umgesehen, kann aber noch nichts finden und habe mich daher gefragt, ob jemand andere Vorschläge für gute KNN-Imputationspakete hat.

W

Im folgenden Code werden die NA-Werte durch Nullen und nicht durch den Knn-Mittelwert ersetzt

require(imputation)
x = matrix(rnorm(100),10,10)
x.missing = x > 1
x[x.missing] = NA
kNNImpute(x, 3)
x
Wouter
quelle
1
Nach dem Quellcode github.com/jeffwong/imputation/blob/master/R/kNN.R werden nicht zuzuordnende Einträge einfach auf Null gesetzt. Der Grund, warum Sie so viele Nullen sehen, ist, dass der vom Autor des Pakets gewählte Algorithmus keine Werte für diese Einträge annehmen kann. Es ist möglicherweise besser, den Algorithmus zu lockern, um sinnvolle Schätzungen für diese Werte zu erhalten.
Flunder
(Siehe Zeilen 91-93 des Codes im obigen Link)
Flunder
Ich hatte die gleiche Frage vor einer Weile, gepostet auf stackoverflow
Alex W
Bemerkenswert: Es gibt keine Hoffnung, dass ein Imputationsmodell eine unvoreingenommene Schätzung Ihrer von Ihnen generierten fehlenden Daten liefert (basierend darauf, wie Sie sie gelöscht haben). Natürlich denke ich, dass Sie mehr daran interessiert sind, überhaupt kNNImputezur Arbeit zu kommen (anstatt gut zu arbeiten), sodass Sie sich wahrscheinlich nicht für die Voreingenommenheit interessieren.
Cliff AB
Gibt es einen bestimmten Grund, warum Sie KNN verwenden möchten? Predictive Mean Matching ist ziemlich ähnlich und hat viele optimale Eigenschaften.
RayVelcoro

Antworten:

10

Sie können auch das folgende Paket ausprobieren: ausprobieren DMwR .

Im Fall von 3 NN ist dies fehlgeschlagen, was zu dem Ergebnis "Fehler in knnImputation (x, k = 3): Nicht genügend vollständige Fälle für die Berechnung der Nachbarn" führte.

Allerdings gibt der Versuch 2.

> knnImputation(x,k=2)
             [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
 [1,] -0.59091360 -1.2698175  0.5556009 -0.1327224 -0.8325065  0.71664000
 [2,] -1.27255074 -0.7853602  0.7261897  0.2969900  0.2969556 -0.44612831
 [3,]  0.55473981  0.4748735  0.5158498 -0.9493917 -1.5187722 -0.99377854
 [4,] -0.47797654  0.1647818  0.6167311 -0.5149731  0.5240514 -0.46027809
 [5,] -1.08767831 -0.3785608  0.6659499 -0.7223724 -0.9512409 -1.60547053
 [6,] -0.06153279  0.9486815 -0.5464601  0.1544475  0.2835521 -0.82250221
 [7,] -0.82536029 -0.2906253 -3.0284281 -0.8473210  0.7985286 -0.09751927
 [8,] -1.15366189  0.5341000 -1.0109258 -1.5900281  0.2742328  0.29039928
 [9,] -1.49504465 -0.5419533  0.5766574 -1.2412777 -1.4089572 -0.71069839
[10,] -0.35935440 -0.2622265  0.4048126 -2.0869817  0.2682486  0.16904559
             [,7]       [,8]        [,9]      [,10]
 [1,]  0.58027159 -1.0669137  0.48670802  0.5824858
 [2,] -0.48314440 -1.0532693 -0.34030385 -1.1041681
 [3,] -2.81996446  0.3191438 -0.48117020 -0.0352633
 [4,] -0.55080515 -1.0620243 -0.51383557  0.3161907
 [5,] -0.56808769 -0.3696951  0.35549191  0.3202675
 [6,] -0.25043479 -1.0389393  0.07810902  0.5251606
 [7,] -0.41667318  0.8809541 -0.04613332 -1.1586756
 [8,] -0.06898363 -1.0736161  0.62698065 -1.0373835
 [9,]  0.30051583 -0.2936140  0.31417921 -1.4155193
[10,] -0.68180034 -1.0789745  0.58290920 -1.0197956

Sie können mit complete.cases (x) auf ausreichende Beobachtungen prüfen, wobei dieser Wert mindestens k betragen muss.

Eine Möglichkeit, dieses Problem zu lösen, besteht darin, Ihre Anforderungen (dh weniger unvollständige Zeilen) zu lockern, indem Sie 1) den NA-Schwellenwert erhöhen oder 2) die Anzahl der Beobachtungen erhöhen.

Hier ist der erste:

> x = matrix(rnorm(100),10,10)
> x.missing = x > 2
> x[x.missing] = NA
> complete.cases(x)
 [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
> knnImputation(x,k=3)
             [,1]       [,2]       [,3]       [,4]        [,5]       [,6]       [,7]        [,8]        [,9]       [,10]
 [1,]  0.86882569 -0.2409922  0.3859031  0.5818927 -1.50310330  0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
 [2,]  1.54114079  0.7227511  0.7856277  0.8512048 -1.32442954 -2.1668744  0.7017532 -0.40086348 -0.41251883  0.42924986
 [3,]  0.60062917 -0.5955623  0.6192783 -0.3836310  0.06871570  1.7804657  0.5965411 -1.62625036  1.27706937  0.72860273
 [4,] -0.07328279 -0.1738157  1.4965579 -1.1686115 -0.06954318 -1.0171604 -0.3283916  0.63493884  0.72039689 -0.20889111
 [5,]  0.78747874 -0.8607320  0.4828322  0.6558960 -0.22064430  0.2001473  0.7725701  0.06155196  0.09011719 -1.01902968
 [6,]  0.17988720 -0.8520000 -0.5911523  1.8100573 -0.56108621  0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
 [7,]  1.03943492  0.4880532 -2.7588922 -0.1336166 -1.28424057  1.2871333  0.7595750 -0.55615677 -1.67765572 -0.05440992
 [8,]  1.12394474  1.4890366 -1.6034648 -1.4315445 -0.23052386 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
 [9,] -0.30393916  0.6216156  0.1559639  1.2297105 -0.29439390  1.8224512 -0.4457441 -0.32814665  0.55487894 -0.22602598
[10,]  1.18424722 -0.1816049 -2.2975095 -0.7537477  0.86647524 -0.8710603  0.3351710 -0.79632184 -0.56254688 -0.77449398
> x
             [,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]        [,8]        [,9]       [,10]
 [1,]  0.86882569 -0.2409922  0.3859031  0.5818927 -1.5031033  0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
 [2,]  1.54114079  0.7227511  0.7856277  0.8512048 -1.3244295 -2.1668744  0.7017532 -0.40086348 -0.41251883  0.42924986
 [3,]  0.60062917 -0.5955623  0.6192783 -0.3836310  0.0687157  1.7804657  0.5965411 -1.62625036  1.27706937  0.72860273
 [4,] -0.07328279 -0.1738157  1.4965579 -1.1686115         NA -1.0171604 -0.3283916  0.63493884  0.72039689 -0.20889111
 [5,]  0.78747874 -0.8607320  0.4828322         NA -0.2206443  0.2001473  0.7725701  0.06155196  0.09011719 -1.01902968
 [6,]  0.17988720 -0.8520000 -0.5911523  1.8100573 -0.5610862  0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
 [7,]  1.03943492  0.4880532 -2.7588922 -0.1336166 -1.2842406  1.2871333  0.7595750 -0.55615677 -1.67765572 -0.05440992
 [8,]  1.12394474  1.4890366 -1.6034648 -1.4315445 -0.2305239 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
 [9,] -0.30393916  0.6216156  0.1559639  1.2297105 -0.2943939  1.8224512 -0.4457441 -0.32814665  0.55487894 -0.22602598
[10,]  1.18424722 -0.1816049 -2.2975095 -0.7537477  0.8664752 -0.8710603  0.3351710 -0.79632184 -0.56254688 -0.77449398

Hier ist ein Beispiel für die 2. ...

x = matrix(rnorm(1000),100,10)
x.missing = x > 1
x[x.missing] = NA

complete.cases(x)

  [1]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
 [22] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [43]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [64] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE

Mindestens k = 3 vollständige Zeilen sind erfüllt, so dass k = 3 unterstellt werden kann.

> head(knnImputation(x,k=3))
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]       [,8]        [,9]       [,10]
[1,]  0.01817557 -2.8141502  0.3929944  0.1495092 -1.7218396  0.4159133 -0.8438809  0.6599224 -0.02451113 -1.14541016
[2,]  0.51969964 -0.4976021 -0.1495392 -0.6448184 -0.6066386 -1.6210476 -0.3118440  0.2477855 -0.30986749  0.32424673
...
klopfen
quelle
5
require(imputation)
x = matrix(rnorm(100),10,10)
x.missing = x > 1
x[x.missing] = NA
y <- kNNImpute(x, 3)

attributes(y)

$names
[1] "x"              "missing.matrix"

y$x

> x (ursprüngliche Matrix)

             [,1]        [,2]       [,3]       [,4]        [,5]        [,6]        [,7]
 [1,]  0.38515909  0.52661156  0.6164138  0.3095225  0.55909716 -1.16543168 -0.70714440
 [2,] -0.39222402 -1.29703536  0.4429824 -1.3950116          NA -0.46841443 -0.57563472
 [3,] -2.04467869 -0.52022405         NA  0.7219057 -0.93573417 -1.51490638  0.62356689
 [4,] -1.08684345  0.63083074         NA  0.5603603  0.48583414          NA -0.69447183
 [5,]  0.30116921  0.25127476 -0.2132160         NA -1.63484823 -0.58266488  0.34432576
 [6,]  0.82152305 -0.12900915 -1.8498997  0.8012059          NA -0.14987133 -1.11232289
 [7,]  0.27912763 -0.68923032 -0.2355762 -0.2541675 -0.14181344 -0.08519797  0.13061823
 [8,]  0.06653984 -0.87521539 -0.0980306 -0.4350224  0.05021324 -1.66963624 -0.09204772
 [9,]  0.12687240 -0.62717646 -0.1258722         NA -0.86913445  0.68365036          NA
[10,]  0.56680502  0.03318012  0.1411861  0.6573134 -0.14747073          NA -1.37949278
             [,8]        [,9]       [,10]
 [1,] -2.67066748          NA -0.64370528
 [2,] -1.26864936 -1.95692064  0.28917897
 [3,] -0.27816124 -0.20332695 -1.29456054
 [4,] -1.10917662 -0.59598910 -0.32475962
 [5,] -0.15448822  0.71667444 -1.60827152
 [6,] -0.66691445  0.05396037  0.04074923
 [7,]  0.05644956  0.99416556 -0.77808427
 [8,] -0.32294266          NA -2.50933697
 [9,] -0.67226044          NA          NA
[10,] -0.84866945 -0.54318570          NA

> y $ x (unterstellte Matrix)

            [,1]        [,2]        [,3]        [,4]        [,5]        [,6]        [,7]
 [1,]  0.38515909  0.52661156  0.61641378  0.30952251  0.55909716 -1.16543168 -0.70714440
 [2,] -0.39222402 -1.29703536  0.44298237 -1.39501160 -0.22157531 -0.46841443 -0.57563472
 [3,] -2.04467869 -0.52022405  0.08298882  0.72190573 -0.93573417 -1.51490638  0.62356689
 [4,] -1.08684345  0.63083074 -0.66707695  0.56036034  0.48583414 -0.98956026 -0.69447183
 [5,]  0.30116921  0.25127476 -0.21321600 -0.02480909 -1.63484823 -0.58266488  0.34432576
 [6,]  0.82152305 -0.12900915 -1.84989965  0.80120592 -0.76323053 -0.14987133 -1.11232289
 [7,]  0.27912763 -0.68923032 -0.23557619 -0.25416751 -0.14181344 -0.08519797  0.13061823
 [8,]  0.06653984 -0.87521539 -0.09803060 -0.43502238  0.05021324 -1.66963624 -0.09204772
 [9,]  0.12687240 -0.62717646 -0.12587221  0.00000000 -0.86913445  0.68365036  0.00000000
[10,]  0.56680502  0.03318012  0.14118610  0.65731337 -0.14747073  0.00000000 -1.37949278
             [,8]        [,9]       [,10]
 [1,] -2.67066748  0.04286260 -0.64370528
 [2,] -1.26864936 -1.95692064  0.28917897
 [3,] -0.27816124 -0.20332695 -1.29456054
 [4,] -1.10917662 -0.59598910 -0.32475962
 [5,] -0.15448822  0.71667444 -1.60827152
 [6,] -0.66691445  0.05396037  0.04074923
 [7,]  0.05644956  0.99416556 -0.77808427
 [8,] -0.32294266  0.00000000 -2.50933697
 [9,] -0.67226044  0.00000000  0.00000000
[10,] -0.84866945 -0.54318570  0.00000000

Es werden die Werte unterstellt, die es kann. Diejenigen, die nicht unterstellt werden können, werden auf Null gesetzt.

Eric Peterson
quelle
Scheint, dass imputationPakete nicht mehr existieren (für R Version 3.1.2)
Ehsan M. Kermani
Es ist in Github, google es.
Marbel
5

Das Imputationspaket ist nicht mehr bei CRAN.

Ein anderes Paket als DMwR, das eine kNN-Imputationsfunktion bietet, ist VIM.

Auch einfach zu bedienen:

library("VIM")
kNN(x, k=3)
stats0007
quelle
1
install.packages("DMwR")*  # for use of knnImputation.

require(DMwR)
x  = matrix(rnorm(100), 10, 10)
x.missing= x >1
x[x.missing] = NA
complete.cases(x)
y <- knnImputation(x, 3)
user89870
quelle
0

Der Grund dafür, dass R nicht zurechtweisen kann, ist, dass in vielen Fällen mehr als ein Attribut in einer Zeile fehlt und daher der nächste Nachbar nicht berechnet werden kann. Was Sie alternativ tun können, sind entweder Impute-Intervall-Variablen mit projizierten Wahrscheinlichkeiten aus einer Normalverteilung (oder wenn sie schief sind, verwenden Sie eine Gamma-Verteilung mit einer ähnlichen Neigung). und verwenden Sie einen Entscheidungsbaum, um fehlende Werte im Fall einer Klassenvariablen vorherzusagen.

Sarath Sunil
quelle