Konfidenzintervall für das Produkt zweier Parameter

11

Nehmen wir an, wir haben zwei Parameter, p1 und p2 . Wir haben auch zwei Maximum-Likelihood-Schätzer p1^ und p2^ und zwei Konfidenzintervalle für diese Parameter. Gibt es eine Möglichkeit, ein Konfidenzintervall für zu erstellen p1p2?

Gast
quelle

Antworten:

13

Mit der Delta-Methode können Sie den Standardfehler von p1^p2^ berechnen . Das Delta-Verfahren besagt, dass eine Annäherung der Varianz einer Funktion g(t) gegeben ist durch:

Var(g(t))i=1kgi(θ)2Var(ti)+2i>jgi(θ)gj(θ)Cov(ti,tj)
, p Die Annäherung der Erwartung vong(t)ist andererseits gegeben durch:
E(g(t))g(θ)
Die Erwartung ist also einfach die Funktion. Ihre Funktiong(t)ist:g(p1,p2)=p1p2 . Die Erwartung von g(p1,p2)=p1p2 wäre einfach:p1p2 . Für die Varianz benötigen wir die partiellen Ableitungen vong(p1,p2) :
p1g(p1p2)=p2p2g(p1p2)=p1

Using the function for the variance above, we get:

Var(p1^p2^)=p2^2Var(p1^)+p1^2Var(p2^)+2p1^p2^Cov(p1^,p2^)
The standard error would then simply be the sqare root of the above expression. Once you've got the standard error, it is straight forward to calculate a 95% confidence interval for p1^p2^: p1^p2^±1.96SE^(p1^p2^)

To caluclate the standard error of p1^p2^, you need the variance of p1^ and p2^ which you usually can get by the variance-covariance matrix Σ which would be a 2x2-matrix in your case because you have two estimates. The diagonal elements in the variance-covariance matrix are the variances of p1^ and p2^ while the off-diagonal elements are the covariance of p1^ and p2^ (the matrix is symmetric). As @gung mentions in the comments, the variance-covariance matrix can be extracted by most statistical softwares. Sometimes, estimation algorithms provide the Hessian matrix (I won't go into details about that here), and the variance-covariance matrix can be estimated by the inverse of the negative Hessian (but only if you maximized the log-likelihood!; see this post). Again, consult the documentation of your statistical software and/or the web on how to extract the Hessian and on how to calculate the inverse of a matrix.

Alternatively, you can get the variances of p1^ and p2^ from the confidence intervals in the following way (this is valid for a 95%-CI): SE(p1^)=(upper limitlower limit)/3.92. For an 100(1α)%-CI, the estimated standard error is: SE(p1^)=(upper limitlower limit)/(2z1α/2), where z1α/2 is the (1α/2) quantile of the standard normal distribution (for α=0.05, z0.9751.96). Then, Var(p1^)=SE(p1^)2. The same is true for the variance of p2^. We need to covariance of p1^ and p2^ too (see paragraph above). If p1^ and p2^ are independent, the covariance is zero and we can drop the term.

This paper might provide additional information.

COOLSerdash
quelle
4
+1. The variances of the parameters & their covariance can be found by examining the variance-covariance matrix of β, which most statistical software can provide. Eg, in R, it's ?vcov; & in SAS, covb is added as an option to the model statement in PROC REG.
gung - Reinstate Monica
1
@gung On a point of pedantry it might be worth pointing out (because I know it confuses some people) that it's really the variance-covariance matrix of β^ rather than β (and in fact it isn't even really that, because the standard deviation has to be estimated from the sample, so it's really the estimated variance-covariance matrix..)
Silverfish
2
@Silverfish, duly chastised. Next time I'll say "the estimated variance-covariance matrix of β^".
gung - Reinstate Monica
1
You could try to construct a profile likelihood function! and construct the confidence interval from that.
kjetil b halvorsen
Isn’t var(p1)=0 since it’s a parameter?
user0
1

I found a different equation for calculation of variance of product.

If x and y are independently distributed, the variance of the product is relatively straightforward: V(x*y)= V(y)*E(x)^2 + V(x)*E(y)^2 + V(x)*V(y) These results also generalize to cases involving three or more variables (Goodman 1960). Source: Regulating Pesticides (1980), appendix F

Coolserdash: The last component V(x)*V(y) is missing in your equation. Is the referenced book (Regulating Pesticides) wrong?

Also, both equations might not be perfect. "... we show that the distribution of the product of three independent normal variables is not normal." (source). I would expect some positive skew even in the product of two normally distributed variables.

Marek Čierny
quelle
0
  1. The length of the CI / 2 / 1.96 = se, i.e. the standard error of A or B
  2. se^2 = var, i.e. the variance of the estimate A or B
  3. Use the estimated A or B as the means of A or B, i.e. E(A) or E(B)
  4. Follow this page http://falkenblog.blogspot.se/2008/07/formula-for-varxy.html to get var(A*B), i.e. var(C)
  5. Square-root of var(C) is the se of C
  6. (C - 1.96*se(C), C + 1.96*se(C)) is the 95% CI of C

Note that if your A and B are correlated, you need to consider their covariance as well.

IcedCoffee
quelle