Nehmen wir an, wir haben zwei Parameter, und . Wir haben auch zwei Maximum-Likelihood-Schätzer und und zwei Konfidenzintervalle für diese Parameter. Gibt es eine Möglichkeit, ein Konfidenzintervall für zu erstellen ?
Nehmen wir an, wir haben zwei Parameter, und . Wir haben auch zwei Maximum-Likelihood-Schätzer und und zwei Konfidenzintervalle für diese Parameter. Gibt es eine Möglichkeit, ein Konfidenzintervall für zu erstellen ?
Mit der Delta-Methode können Sie den Standardfehler von berechnen . Das Delta-Verfahren besagt, dass eine Annäherung der Varianz einer Funktion gegeben ist durch:
Using the function for the variance above, we get:
To caluclate the standard error of , you need the variance of and which you usually can get by the variance-covariance matrix which would be a 2x2-matrix in your case because you have two estimates. The diagonal elements in the variance-covariance matrix are the variances of and while the off-diagonal elements are the covariance of and (the matrix is symmetric). As @gung mentions in the comments, the variance-covariance matrix can be extracted by most statistical softwares. Sometimes, estimation algorithms provide the Hessian matrix (I won't go into details about that here), and the variance-covariance matrix can be estimated by the inverse of the negative Hessian (but only if you maximized the log-likelihood!; see this post). Again, consult the documentation of your statistical software and/or the web on how to extract the Hessian and on how to calculate the inverse of a matrix.
Alternatively, you can get the variances of and from the confidence intervals in the following way (this is valid for a 95%-CI): . For an -CI, the estimated standard error is: , where is the quantile of the standard normal distribution (for , ). Then, . The same is true for the variance of . We need to covariance of and too (see paragraph above). If and are independent, the covariance is zero and we can drop the term.
This paper might provide additional information.
covb
is added as an option to the model statement in PROC REG.I found a different equation for calculation of variance of product.
Coolserdash: The last component V(x)*V(y) is missing in your equation. Is the referenced book (Regulating Pesticides) wrong?
Also, both equations might not be perfect. "... we show that the distribution of the product of three independent normal variables is not normal." (source). I would expect some positive skew even in the product of two normally distributed variables.
quelle
Note that if your A and B are correlated, you need to consider their covariance as well.
quelle