Vielleicht hat diese Frage in der Medizin eine Antwort, aber gibt es statistische Gründe, warum der BMI-Index als berechnet wird ? Warum nicht zum Beispiel nur ? Meine erste Idee ist, dass es etwas mit quadratischer Regression zu tun hat. Gewicht / Größe
Stichprobe realer Daten (200 Personen mit Gewicht, Größe, Alter und Geschlecht):
structure(list(Age = c(18L, 21L, 17L, 20L, 19L, 53L, 27L, 22L,
19L, 27L, 19L, 20L, 19L, 20L, 42L, 17L, 23L, 20L, 20L, 19L, 20L,
19L, 19L, 18L, 19L, 15L, 19L, 15L, 19L, 21L, 60L, 19L, 17L, 23L,
60L, 33L, 24L, 19L, 19L, 22L, 20L, 21L, 19L, 19L, 20L, 18L, 19L,
20L, 22L, 20L, 20L, 27L, 19L, 22L, 19L, 20L, 20L, 21L, 16L, 19L,
41L, 54L, 18L, 23L, 19L, 19L, 22L, 18L, 20L, 19L, 25L, 18L, 20L,
15L, 61L, 19L, 34L, 15L, 19L, 16L, 19L, 18L, 15L, 20L, 20L, 20L,
20L, 19L, 16L, 37L, 37L, 18L, 20L, 16L, 20L, 36L, 18L, 19L, 19L,
20L, 18L, 17L, 22L, 17L, 22L, 16L, 24L, 17L, 33L, 17L, 17L, 15L,
18L, 18L, 16L, 20L, 29L, 24L, 18L, 17L, 18L, 36L, 16L, 17L, 20L,
16L, 43L, 19L, 18L, 20L, 19L, 18L, 21L, 19L, 20L, 23L, 19L, 19L,
20L, 24L, 19L, 20L, 38L, 18L, 17L, 19L, 19L, 20L, 20L, 21L, 20L,
20L, 42L, 17L, 20L, 25L, 20L, 21L, 21L, 22L, 19L, 25L, 19L, 40L,
25L, 52L, 25L, 21L, 20L, 41L, 34L, 24L, 30L, 21L, 27L, 47L, 21L,
16L, 31L, 21L, 37L, 20L, 22L, 19L, 20L, 25L, 23L, 20L, 20L, 21L,
36L, 19L, 21L, 16L, 20L, 18L, 21L, 21L, 18L, 19L), Height = c(180L,
175L, 178L, 160L, 172L, 172L, 180L, 165L, 160L, 187L, 165L, 176L,
164L, 155L, 166L, 167L, 171L, 158L, 170L, 182L, 182L, 175L, 197L,
170L, 165L, 176L, 167L, 170L, 168L, 163L, 155L, 152L, 158L, 165L,
180L, 187L, 177L, 170L, 178L, 170L, 170L, NA, 188L, 180L, 161L,
178L, 178L, 165L, 187L, 178L, 168L, 168L, 180L, 192L, 188L, 173L,
193L, 184L, 167L, 177L, 177L, 160L, 167L, 190L, 187L, 163L, 173L,
165L, 190L, 178L, 167L, 160L, 169L, 174L, 165L, 176L, 183L, 166L,
178L, 158L, 180L, 167L, 170L, 170L, 180L, 184L, 170L, 180L, 169L,
165L, 156L, 166L, 178L, 162L, 178L, 181L, 168L, 185L, 175L, 167L,
193L, 160L, 171L, 182L, 165L, 174L, 169L, 185L, 173L, 170L, 182L,
165L, 160L, 158L, 186L, 173L, 168L, 172L, 164L, 185L, 175L, 162L,
182L, 170L, 187L, 169L, 178L, 189L, 166L, 161L, 180L, 185L, 179L,
170L, 184L, 180L, 166L, 167L, 178L, 175L, 190L, 178L, 157L, 179L,
180L, 168L, 164L, 187L, 174L, 176L, 170L, 170L, 168L, 158L, 175L,
174L, 170L, 173L, 158L, 185L, 170L, 178L, 166L, 176L, 167L, 168L,
169L, 168L, 178L, 183L, 166L, 165L, 160L, 176L, 186L, 162L, 172L,
164L, 171L, 175L, 164L, 165L, 160L, 180L, 170L, 180L, 175L, 167L,
165L, 168L, 176L, 166L, 164L, 165L, 180L, 173L, 168L, 177L, 167L,
173L), Weight = c(60L, 63L, 70L, 46L, 60L, 68L, 80L, 68L, 55L,
89L, 55L, 63L, 60L, 44L, 62L, 57L, 59L, 50L, 60L, 65L, 63L, 72L,
96L, 50L, 55L, 53L, 54L, 49L, 72L, 49L, 75L, 47L, 57L, 70L, 105L,
85L, 80L, 55L, 67L, 60L, 70L, NA, 76L, 85L, 53L, 69L, 74L, 50L,
91L, 68L, 55L, 55L, 57L, 80L, 98L, 58L, 85L, 120L, 62L, 63L,
88L, 80L, 57L, 90L, 83L, 51L, 52L, 65L, 92L, 58L, 76L, 53L, 64L,
63L, 72L, 68L, 110L, 52L, 68L, 50L, 78L, 57L, 75L, 55L, 75L,
68L, 60L, 65L, 48L, 56L, 65L, 65L, 88L, 55L, 68L, 74L, 65L, 62L,
58L, 55L, 84L, 60L, 52L, 92L, 60L, 65L, 50L, 73L, 51L, 60L, 76L,
48L, 50L, 53L, 63L, 68L, 56L, 68L, 60L, 70L, 65L, 52L, 75L, 65L,
68L, 63L, 54L, 76L, 60L, 59L, 80L, 74L, 96L, 68L, 72L, 62L, 58L,
50L, 75L, 70L, 85L, 67L, 65L, 55L, 78L, 58L, 53L, 56L, 72L, 62L,
60L, 56L, 82L, 70L, 53L, 67L, 58L, 58L, 49L, 90L, 58L, 77L, 55L,
70L, 64L, 98L, 60L, 60L, 65L, 74L, 99L, 49L, 47L, 75L, 77L, 74L,
68L, 50L, 66L, 75L, 54L, 60L, 65L, 80L, 90L, 95L, 79L, 57L, 70L,
60L, 85L, 44L, 58L, 50L, 88L, 60L, 54L, 68L, 56L, 69L), Gender = c(1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 2L, 2L, 1L)), .Names = c("Age", "Height", "Weight",
"Gender"), row.names = 304:503, class = "data.frame")
biostatistics
Miroslav Sabo
quelle
quelle
library(MASS); rlm(log(Weight) ~ log(Height) + cut(Age, 3) + as.factor(Gender), data=y)
mitrlm(Weight ~ Height + cut(Age, 3) + as.factor(Gender), data=y)
(und zeichnen Sie die Diagnose für beide Anpassungen auf), um den heilsamen Effekt der Verwendung von Logarithmen zu sehen: Sie stabilisieren und symmetrisieren tatsächlich die Residuen. In beiden Modellen ist das Geschlecht und das Alter von Bedeutung. Die Beziehung zum Alter ist nichtlinear. Es ist sehr interessant, dass der logarithmische Koeffizient (Höhe) im ersten Modell jetzt bei statt . ( Werden Ihre Daten mit den fehlenden Werten gelöscht?) Ich sehe keine Interaktionen. 2.5y
Antworten:
Diese Rezension von Eknoyan (2007) enthält weit mehr, als Sie wahrscheinlich über Quetelet und seine Erfindung des Body-Mass-Index wissen wollten.
Die kurze Version ist, dass der BMI ungefähr normal verteilt aussieht, während das Gewicht allein oder das Gewicht / die Größe dies nicht tut, und Quetelet war daran interessiert, einen "normalen" Mann über Normalverteilungen zu beschreiben. Es gibt auch einige Argumente der ersten Prinzipien, die darauf beruhen, wie Menschen wachsen, und einige neuere Arbeiten haben versucht, diese Skalierung auf eine gewisse Biomechanik zurückzuführen.
Es ist erwähnenswert, dass der Wert des BMI ziemlich heiß diskutiert wird. Es korreliert ziemlich gut mit Fettleibigkeit, aber die Grenzwerte für Untergewicht / Übergewicht / Fettleibigkeit stimmen nicht ganz mit den Ergebnissen im Gesundheitswesen überein.
quelle
weight/height^3
was als Dichte interpretiert werden würde (intuitiv sinnvoll), sich aber aufgrund seiner Normalverteilung für den klassischen BMI entschied, wie Sie sagten.Aus Adolphe Quetelets "Eine Abhandlung über den Menschen und die Entwicklung seiner Fähigkeiten":
Siehe hier .
Er war nicht daran interessiert, Fettleibigkeit zu charakterisieren, sondern an der Beziehung zwischen Gewicht und Größe, da er sich sehr für Biometrie und Glockenkurven interessierte. Die Ergebnisse von Quetelet zeigten, dass der BMI in der Bevölkerung ungefähr normal verteilt war. Dies bedeutete ihm, dass er die "richtige" Beziehung gefunden hatte. (Interessanterweise würde sich Francis Galton erst ein oder zwei Jahrzehnte später der Frage der "Höhenverteilung" in der Bevölkerung nähern und den Begriff "Regression zum Mittelwert" prägen).
Es ist erwähnenswert, dass der BMI in der heutigen Zeit eine Geißel der Biometrie war, da in der Framingham-Studie der BMI weitreichend zur Identifizierung von Fettleibigkeit eingesetzt wurde. Es fehlt immer noch ein guter Prädiktor für Fettleibigkeit (und gesundheitsbezogene Ergebnisse davon). Das Verhältnis von Taille zu Hüfte ist ein vielversprechender Kandidat. Wenn Ultraschall billiger und besser wird, werden Ärzte ihn hoffentlich verwenden, um nicht nur Fettleibigkeit, sondern auch Fettablagerungen und Verkalkungen in den Organen zu identifizieren und auf dieser Grundlage Empfehlungen für die Pflege abzugeben.
quelle
Der BMI wird heutzutage hauptsächlich wegen seiner Fähigkeit verwendet, das viszerale Fettvolumen des Abdomens zu approximieren, was bei der Untersuchung des kardiovaskulären Risikos nützlich ist. Eine Fallstudie zur Analyse der Angemessenheit des BMI beim Screening auf Diabetes finden Sie in Kapitel 15 von http://biostat.mc.vanderbilt.edu/CourseBios330 unter Handouts . Es gibt mehrere Bewertungen. Sie werden sehen, dass eine bessere Höhenkraft näher bei 2,5 liegt, aber Sie können es besser machen als mit Größe und Gewicht.
quelle