Hier ist ein Beispiel für die Implementierung mit dem rugarch
Paket und mit einigen gefälschten Daten. Die Funktion ugarchfit
ermöglicht die Einbeziehung externer Regressoren in die Mittelwertgleichung (beachten Sie die Verwendung von external.regressors
in fit.spec
im folgenden Code).
Um , lautet das Modell
wobei und bezeichnen die Kovariate zum Zeitpunkt und mit den "üblichen" Annahmen / Anforderungen an Parameter und den Innovationsprozess .
ytϵtσ2t=λ0+λ1xt,1+λ2xt,2+ϵt,=σtZt,=ω+αϵ2t−1+βσ2t−1,
xt,1xt,2tZt
Die im Beispiel verwendeten Parameterwerte sind wie folgt.
## Model parameters
nb.period <- 1000
omega <- 0.00001
alpha <- 0.12
beta <- 0.87
lambda <- c(0.001, 0.4, 0.2)
Das Bild unten zeigt die Reihe der Kovariaten und sowie die Reihe . Der Code, mit dem sie generiert wurden, ist unten angegeben. x t , 2 y txt,1xt,2ytR
## Dependencies
library(rugarch)
## Generate some covariates
set.seed(234)
ext.reg.1 <- 0.01 * (sin(2*pi*(1:nb.period)/nb.period))/2 + rnorm(nb.period, 0, 0.0001)
ext.reg.2 <- 0.05 * (sin(6*pi*(1:nb.period)/nb.period))/2 + rnorm(nb.period, 0, 0.001)
ext.reg <- cbind(ext.reg.1, ext.reg.2)
## Generate some GARCH innovations
sim.spec <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(0,0), include.mean = FALSE),
distribution.model = "norm",
fixed.pars = list(omega = omega, alpha1 = alpha, beta1 = beta))
path.sgarch <- ugarchpath(sim.spec, n.sim = nb.period, n.start = 1)
epsilon <- as.vector(fitted(path.sgarch))
## Create the time series
y <- lambda[1] + lambda[2] * ext.reg[, 1] + lambda[3] * ext.reg[, 2] + epsilon
## Data visualization
par(mfrow = c(3,1))
plot(ext.reg[, 1], type = "l", xlab = "Time", ylab = "Covariate 1")
plot(ext.reg[, 2], type = "l", xlab = "Time", ylab = "Covariate 2")
plot(y, type = "h", xlab = "Time")
par(mfrow = c(1,1))
Eine Anpassung erfolgt ugarchfit
wie folgt.
## Fit
fit.spec <- ugarchspec(variance.model = list(model = "sGARCH",
garchOrder = c(1, 1)),
mean.model = list(armaOrder = c(0, 0),
include.mean = TRUE,
external.regressors = ext.reg),
distribution.model = "norm")
fit <- ugarchfit(data = y, spec = fit.spec)
Parameterschätzungen sind
## Results review
fit.val <- coef(fit)
fit.sd <- diag(vcov(fit))
true.val <- c(lambda, omega, alpha, beta)
fit.conf.lb <- fit.val + qnorm(0.025) * fit.sd
fit.conf.ub <- fit.val + qnorm(0.975) * fit.sd
> print(fit.val)
# mu mxreg1 mxreg2 omega alpha1 beta1
#1.724885e-03 3.942020e-01 7.342743e-02 1.451739e-05 1.022208e-01 8.769060e-01
> print(fit.sd)
#[1] 4.635344e-07 3.255819e-02 1.504019e-03 1.195897e-10 8.312088e-04 3.375684e-04
Und entsprechende wahre Werte sind
> print(true.val)
#[1] 0.00100 0.40000 0.20000 0.00001 0.12000 0.87000
Die folgende Abbildung zeigt eine Parameterschätzung mit 95% -Konfidenzintervallen und die wahren Werte. Der R
Code, der zum Generieren verwendet wird, ist unten angegeben.
plot(c(lambda, omega, alpha, beta), pch = 1, col = "red",
ylim = range(c(fit.conf.lb, fit.conf.ub, true.val)),
xlab = "", ylab = "", axes = FALSE)
box(); axis(1, at = 1:length(fit.val), labels = names(fit.val)); axis(2)
points(coef(fit), col = "blue", pch = 4)
for (i in 1:length(fit.val)) {
lines(c(i,i), c(fit.conf.lb[i], fit.conf.ub[i]))
}
legend( "topleft", legend = c("true value", "estimate", "confidence interval"),
col = c("red", "blue", 1), pch = c(1, 4, NA), lty = c(NA, NA, 1), inset = 0.01)
ugarchfit
Funktion erhalten.