“Dijkstras Python” Code-Antworten

Dijkstras Python

"""
This implementation takes in a single source node, and returns a dictionary
of the predecessors. The implementation of print path beneath it returns 
the Dijkstra's algorithm shortest path from the source node, to a target node.
"""

class Graph:
    def __init__(self, graph={}):
        self.graph = graph

	def Dijkstra(self, source):
      dist = {}
      pred = {}
      u = source

      unvisited = set()

      for vertex in self.graph.keys():  # Initializations
        dist[vertex] = sys.maxsize
        unvisited.add(vertex)  # All nodes initially in Q
        pred[vertex] = -1

        dist[source] = 0  # Distance from source to source is set to 0

      while len(unvisited) > 0:  # The main loop

        minDistance = sys.maxsize
        minVertex = source
        for vertex in unvisited:
          if dist[vertex] < minDistance:
            minDistance = dist[vertex]
            minVertex = vertex

            u = minVertex
            unvisited.remove(u)

            for neighborEdge in self.graph[u]:
              w = float(neighborEdge[1])
              v = neighborEdge[0]

              newLength = dist[u] + w

              if newLength < dist[v]:
                dist[v] = newLength
                pred[v] = u
		return pred
        
	def printPath(self, pred, source, target):
        path = [target]
        while path[-1] != source:
            predKey = pred.get(target)
            path.append(predKey)
            target = predKey

        path.reverse()
        # print(path)
        return path
Dylan Shade

Dijkstra -Algorithmus mit Python

function Dijkstra(Graph, source):
       dist[source]  := 0                     // Distance from source to source is set to 0
       for each vertex v in Graph:            // Initializations
           if v ≠ source
               dist[v]  := infinity           // Unknown distance function from source to each node set to infinity
           add v to Q                         // All nodes initially in Q

      while Q is not empty:                  // The main loop
          v := vertex in Q with min dist[v]  // In the first run-through, this vertex is the source node
          remove v from Q 

          for each neighbor u of v:           // where neighbor u has not yet been removed from Q.
              alt := dist[v] + length(v, u)
              if alt < dist[u]:               // A shorter path to u has been found
                  dist[u]  := alt            // Update distance of u 

      return dist[]
  end function
Hussain Abbas

Ähnliche Antworten wie “Dijkstras Python”

Fragen ähnlich wie “Dijkstras Python”

Weitere verwandte Antworten zu “Dijkstras Python” auf Python

Durchsuchen Sie beliebte Code-Antworten nach Sprache

Durchsuchen Sie andere Codesprachen