GA in Python
# Python3 program to create target string, starting from
# random string using Genetic Algorithm
import random
# Number of individuals in each generation
POPULATION_SIZE = 100
# Valid genes
GENES = '''abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP
QRSTUVWXYZ 1234567890, .-;:_!"#%&/()=?@${[]}'''
# Target string to be generated
TARGET = "I love GeeksforGeeks"
class Individual(object):
'''
Class representing individual in population
'''
def __init__(self, chromosome):
self.chromosome = chromosome
self.fitness = self.cal_fitness()
@classmethod
def mutated_genes(self):
'''
create random genes for mutation
'''
global GENES
gene = random.choice(GENES)
return gene
@classmethod
def create_gnome(self):
'''
create chromosome or string of genes
'''
global TARGET
gnome_len = len(TARGET)
return [self.mutated_genes() for _ in range(gnome_len)]
def mate(self, par2):
'''
Perform mating and produce new offspring
'''
# chromosome for offspring
child_chromosome = []
for gp1, gp2 in zip(self.chromosome, par2.chromosome):
# random probability
prob = random.random()
# if prob is less than 0.45, insert gene
# from parent 1
if prob < 0.45:
child_chromosome.append(gp1)
# if prob is between 0.45 and 0.90, insert
# gene from parent 2
elif prob < 0.90:
child_chromosome.append(gp2)
# otherwise insert random gene(mutate),
# for maintaining diversity
else:
child_chromosome.append(self.mutated_genes())
# create new Individual(offspring) using
# generated chromosome for offspring
return Individual(child_chromosome)
def cal_fitness(self):
'''
Calculate fittness score, it is the number of
characters in string which differ from target
string.
'''
global TARGET
fitness = 0
for gs, gt in zip(self.chromosome, TARGET):
if gs != gt: fitness+= 1
return fitness
# Driver code
def main():
global POPULATION_SIZE
#current generation
generation = 1
found = False
population = []
# create initial population
for _ in range(POPULATION_SIZE):
gnome = Individual.create_gnome()
population.append(Individual(gnome))
while not found:
# sort the population in increasing order of fitness score
population = sorted(population, key = lambda x:x.fitness)
# if the individual having lowest fitness score ie.
# 0 then we know that we have reached to the target
# and break the loop
if population[0].fitness <= 0:
found = True
break
# Otherwise generate new offsprings for new generation
new_generation = []
# Perform Elitism, that mean 10% of fittest population
# goes to the next generation
s = int((10*POPULATION_SIZE)/100)
new_generation.extend(population[:s])
# From 50% of fittest population, Individuals
# will mate to produce offspring
s = int((90*POPULATION_SIZE)/100)
for _ in range(s):
parent1 = random.choice(population[:50])
parent2 = random.choice(population[:50])
child = parent1.mate(parent2)
new_generation.append(child)
population = new_generation
print("Generation: {}\tString: {}\tFitness: {}".\
format(generation,
"".join(population[0].chromosome),
population[0].fitness))
generation += 1
print("Generation: {}\tString: {}\tFitness: {}".\
format(generation,
"".join(population[0].chromosome),
population[0].fitness))
if __name__ == '__main__':
main()
Lovely Lizard