So wählen Sie eine spezielle Spalte mit Dimensionalitätsreduzierung pyspark aus
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.linalg.distributed import RowMatrix
rows = sc.parallelize([
Vectors.sparse(5, {1: 1.0, 3: 7.0}),
Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0),
Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0)
])
mat = RowMatrix(rows)
# Compute the top 5 singular values and corresponding singular vectors.
svd = mat.computeSVD(5, computeU=True)
U = svd.U # The U factor is a RowMatrix.
s = svd.s # The singular values are stored in a local dense vector.
V = svd.V # The V factor is a local dense matrix.
Akshay R