Tensorflow Euklidische Entfernung
def squared_dist(A, B):
assert A.shape.as_list() == B.shape.as_list()
row_norms_A = tf.reduce_sum(tf.square(A), axis=1)
row_norms_A = tf.reshape(row_norms_A, [-1, 1]) # Column vector.
row_norms_B = tf.reduce_sum(tf.square(B), axis=1)
row_norms_B = tf.reshape(row_norms_B, [1, -1]) # Row vector.
return row_norms_A - 2 * tf.matmul(A, tf.transpose(B)) + row_norms_B
Different Dove