Wahre positive, wahre negative, falsch positive, falsch negative im scikit lernen
#According to scikit-learn documentation,
#http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn.metrics.confusion_matrix
#By definition a confusion matrix C is such that C[i, j] is equal to the number of observations known to be in group i but predicted to be in group j.
#Thus in binary classification, the count of true negatives is C[0,0], false negatives is C[1,0], true positives is C[1,1] and false positives is C[0,1].
CM = confusion_matrix(y_true, y_pred)
TN = CM[0][0]
FN = CM[1][0]
TP = CM[1][1]
FP = CM[0][1]
Courageous Cobra