Implementieren Sie den Superoptimizer zum Hinzufügen

11

Die Aufgabe besteht darin, Code zu schreiben, der kleine logische Formeln für Bitsummen finden kann.

Die allgemeine Herausforderung besteht darin, dass Ihr Code die kleinstmögliche logische Satzformel findet, um zu überprüfen, ob die Summe der y binären 0/1-Variablen einem Wert x entspricht. Nennen wir die Variablen x1, x2, x3, x4 usw. Ihr Ausdruck sollte der Summe entsprechen. Das heißt, die logische Formel sollte genau dann wahr sein, wenn die Summe gleich x ist.

Hier ist ein naiver Weg, um damit zu beginnen. Sagen Sie y = 15 und x = 5. Wählen Sie alle 3003 verschiedenen Möglichkeiten zur Auswahl von 5 Variablen aus und erstellen Sie für jede eine neue Klausel mit dem UND dieser Variablen UND dem UND der Negation der verbleibenden Variablen. Sie erhalten 3003 Klauseln mit einer Länge von jeweils genau 15 für Gesamtkosten von 45054.

Ihre Antwort sollte ein logischer Ausdruck dieser Art sein, der beispielsweise einfach in Python eingefügt werden kann, damit ich ihn testen kann. Wenn zwei Personen den gleichen Größenausdruck erhalten, gewinnt der Code, der am schnellsten ausgeführt wird.

Sie dürfen neue Variablen in Ihre Lösung einführen. In diesem Fall besteht Ihre logische Formel aus den y-Binärvariablen x und einigen neuen Variablen. Die gesamte Formel wäre nur dann erfüllbar, wenn die Summe der y-Variablen gleich x ist.

Als Anfangsübung möchten einige Leute vielleicht mit y = 5 Variablen beginnen, die zu x = 2 addieren. Die naive Methode kostet dann 50.

Der Code sollte zwei Werte y und x als Eingaben annehmen und die Formel und ihre Größe als Ausgabe ausgeben. Die Kosten einer Lösung sind nur die Rohanzahl der Variablen in ihrer Ausgabe. So (a or b) and (!a or c) zählt als 4. Die einzigen erlaubt Operatoren sind and, orund not.

Update Es stellt sich heraus, dass es eine clevere Methode gibt, um dieses Problem zu lösen, wenn x = 1 ist, zumindest theoretisch.

user202729
quelle
1
Dies ist nicht zum Thema. Wie Sie sagten: Bei dieser Frage geht es darum, einen logischen Ausdruck zu optimieren. Es ist in keiner Weise eine Programmierherausforderung / ein Programmierrätsel.
Shiona
@shiona Die Herausforderung besteht darin, einen cleveren Weg zu finden, der schnell genug läuft. Vielleicht sollte ich umformulieren, um dies klarer zu machen. Ich halte es für eine Herausforderung, einen Superoptimierer zu schreiben.
1
Bitte definieren Sie die "Größe" genauer. Ihre Beschreibung impliziert, dass NICHT nicht gezählt wird. Oder zählt nur die Negation von Rohvariablen nicht? Jedes binäre UND / ODER zählt als eins?
Keith Randall
1
Wie funktioniert die Einführung neuer Variablen mit der Partitur? Sagen Sie, ich möchte lassen z[0] = y[0] and y[1], wie soll dies angezeigt werden?
Kaya
1
@Lembik danke für den pdf link, ich glaube ich verstehe jetzt. Wenn ich möchte , dass die Variable z[0]dargestellt y[0] or y[1]wird, muss ich nur eine Klausel einführen, die aussieht (y[0] or y[1]) or not z[0](oder eine äquivalente Anweisung unter Verwendung der 3 zulässigen Operatoren).
Kaya

Antworten:

8

Python, 644

Ein einfacher rekursiver Gleichungsgenerator. Serzeugt eine Gleichung, die erfüllt ist, wenn sich die Liste der varsaddiert zu total.

Es sind einige offensichtliche Verbesserungen zu tun. Zum Beispiel gibt es viele gängige Unterausdrücke, die in der 15/5-Ausgabe erscheinen.

def S(vars, total):
    # base case
    if total == 0:
        return "(" + " and ".join("not " + x for x in vars) + ")"
    if total == len(vars):
        return "(" + " and ".join(vars) + ")"

    # recursive case
    n = len(vars)/2
    clauses = []
    for s in xrange(total+1):
        if s > n or total-s > len(vars)-n: continue
        a = S(vars[:n], s)
        b = S(vars[n:], total-s)
        clauses += ["(" + a + " and " + b + ")"]
    return "(" + " or ".join(clauses) + ")"

def T(n, total):
    e = S(["x[%d]"%i for i in xrange(n)], total)
    print "equation", e
    print "score", e.count("[")

    # test it
    for i in xrange(2**n):
        x = [i/2**k%2 for k in xrange(n)]
        if eval(e) != (sum(x) == total):
            print "wrong", x

T(2, 1)
T(5, 2)
T(15, 5)

Erzeugt:

equation (((not x[0]) and (x[1])) or ((x[0]) and (not x[1])))
score 4
equation (((not x[0] and not x[1]) and (((not x[2]) and (x[3] and x[4])) or ((x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))))) or ((((not x[0]) and (x[1])) or ((x[0]) and (not x[1]))) and (((not x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))) or ((x[2]) and (not x[3] and not x[4])))) or ((x[0] and x[1]) and (not x[2] and not x[3] and not x[4])))
score 27
equation (((not x[0] and not x[1] and not x[2] and not x[3] and not x[4] and not x[5] and not x[6]) and (((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6]))))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6]))))) and (not x[7] and not x[8] and not x[9] and not x[10] and not x[11] and not x[12] and not x[13] and not x[14])))
score 644
Keith Randall
quelle
Das ist sehr nett. Wie viel kleiner könnten die Lösungen Ihrer Meinung nach sein?
@Lembik: habe nicht wirklich darüber nachgedacht. Sie müssten neue Variablen für allgemeine Unterausdrücke definieren. Erscheint beispielsweise not x[0] and not x[1] and not x[2]fünfmal im 15/5-Ausdruck.
Keith Randall
2

Ich hätte dies zu einem Kommentar gemacht, aber ich habe keinen Ruf. Ich wollte kommentieren, dass die Ergebnisse von Kwon & Klieber (bekannt als "Commander" -Codierung) für k = 1 von Frisch et al. Für k> = 2 verallgemeinert wurden. "SAT-Codierungen der At-Most-k-Einschränkung." Was Sie fragen, ist ein Sonderfall der AM-k-Einschränkung mit einer zusätzlichen Klausel, um At-Least-k zu garantieren, was trivial ist, nur eine Disjunktion aller Variablen zur AM-k-Einschränkung. Frisch ist ein führender Forscher in der Constraint-Modellierung, daher würde ich gerne vorschlagen, dass [(2k + 2 C k + 1) + (2k + 2 C k-1)] * n / 2 die beste bekannte Grenze für die Anzahl von ist erforderliche Klauseln und k * n / 2 für die Anzahl der einzuführenden neuen Variablen. Die Details sind in dem zitierten Papier zusammen mit den Anweisungen, wie diese Codierung aufgebaut werden soll. Es' Es ist ziemlich einfach, ein Programm zu schreiben, um diese Formel zu generieren, und ich denke, eine solche Lösung wäre wettbewerbsfähig mit allen anderen Lösungen, die Sie wahrscheinlich vorerst finden werden. HTH.

Zendessert
quelle
Vielen Dank. Es wäre interessant zu sehen, ob dies immer noch das Beste für meine Kostenmessung für kleine Problemgrößen ist, bei denen eine umfassende Superoptimierung möglich sein könnte. Hoffentlich wird jemand hier das ausprobieren.