Erstelle eine Flood Paint AI

34

Ziel des Spiels Flood Paint ist es, das gesamte Spielfeld in so wenigen Runden wie möglich in der gleichen Farbe zu halten.

Das Spiel beginnt mit einem Brett, das ungefähr so ​​aussieht:

3 3 5 4 1 3 4 1 5
5 1 3 4 1 1 5 2 1
6 5 2 3 4 3 3 4 3
4 4 4 5 5 5 4 1 4
6 2 5 3[3]1 1 6 6
5 5 1 2 5 2 6 6 3
6 1 1 5 3 6 2 3 6
1 2 2 4 5 3 5 1 2
3 6 6 1 5 1 3 2 4

Gegenwärtig ist die Zahl (die eine Farbe darstellt) in der Mitte des Bretts 3. Bei jeder Runde ändert das Quadrat in der Mitte die Farbe und alle Quadrate derselben Farbe, die von der Mitte aus durch horizontales oder vertikales Bewegen erreichbar sind ( dh im Flutbereich des mittleren Quadrats) ändert sich die Farbe damit. Also, wenn das mittlere Quadrat die Farbe auf 5 ändert:

3 3 5 4 1 3 4 1 5
5 1 3 4 1 1 5 2 1
6 5 2 3 4 3 3 4 3
4 4 4 5 5 5 4 1 4
6 2 5 5[5]1 1 6 6
5 5 1 2 5 2 6 6 3
6 1 1 5 3 6 2 3 6
1 2 2 4 5 3 5 1 2
3 6 6 1 5 1 3 2 4

dann ändert auch die 3 links von der mittleren 3 die Farbe. Jetzt gibt es insgesamt sieben 5er, die von der Mitte aus erreichbar sind. Wenn wir also die Farbe in 4 ändern, gilt Folgendes:

3 3 5 4 1 3 4 1 5
5 1 3 4 1 1 5 2 1
6 5 2 3 4 3 3 4 3
4 4 4 4 4 4 4 1 4
6 2 4 4[4]1 1 6 6
5 5 1 2 4 2 6 6 3
6 1 1 5 3 6 2 3 6
1 2 2 4 5 3 5 1 2
3 6 6 1 5 1 3 2 4

der gemalte Bereich vergrößert sich erneut dramatisch.

Ihre Aufgabe ist es, ein Programm zu erstellen, das ein 19-mal-19-Farbraster von 1 bis 6 als Eingabe verwendet, in welcher Form auch immer Sie sich entscheiden:

4 5 1 1 2 2 1 6 2 6 3 4 2 3 2 3 1 6 3
4 2 6 3 4 4 5 6 4 4 5 3 3 3 3 5 4 3 4
2 3 5 2 2 5 5 1 2 6 2 6 6 2 1 6 6 1 2
4 6 5 5 5 5 4 1 6 6 3 2 6 4 2 6 3 6 6
1 6 4 4 4 4 6 4 2 5 5 3 2 2 4 1 5 2 5
1 6 2 1 5 1 6 4 4 1 5 1 3 4 5 2 3 4 1
3 3 5 3 2 2 2 4 2 1 6 6 6 6 1 4 5 2 5
1 6 1 3 2 4 1 3 3 4 6 5 1 5 5 3 4 3 3
4 4 1 5 5 1 4 6 3 3 4 5 5 6 1 6 2 6 4
1 4 2 5 6 5 5 3 2 5 5 5 3 6 1 4 4 6 6
4 6 6 2 6 6 2 4 2 6 1 5 6 2 3 3 4 3 6
6 1 3 6 3 5 5 3 6 1 3 4 4 5 1 2 6 4 3
2 6 1 3 2 4 2 6 1 1 5 2 6 6 6 6 3 3 3
3 4 5 4 6 6 3 3 4 1 1 6 4 5 1 3 4 1 2
4 2 6 4 1 5 3 6 4 3 4 5 4 2 1 1 4 1 1
4 2 4 1 5 2 2 3 6 6 6 5 2 5 4 5 4 5 1
5 6 2 3 4 6 5 4 1 3 2 3 2 1 3 6 2 2 4
6 5 4 1 3 2 2 1 1 1 6 1 2 6 2 5 6 4 5
5 1 1 4 2 6 2 5 6 1 3 3 4 1 6 1 2 1 2

und gib eine Folge von Farben zurück, die das mittlere Quadrat bei jeder Runde ändert, wieder im Format deiner Wahl:

263142421236425431645152623645465646213545631465

Am Ende jeder Zugsequenz müssen die Quadrate im 19-mal-19-Raster alle dieselbe Farbe haben.

Ihr Programm muss vollständig deterministisch sein. Pseudozufallslösungen sind zulässig, aber das Programm muss jedes Mal dieselbe Ausgabe für denselben Testfall generieren.

Das siegreiche Programm löst mit nur wenigen Schritten alle 100.000 in dieser Datei gefundenen Testfälle (gezippte Textdatei, 14,23 MB). Wenn zwei Lösungen die gleiche Anzahl von Schritten ausführen (z. B. wenn beide die optimale Strategie gefunden haben), gewinnt das kürzere Programm.


BurntPizza hat ein Programm in Java geschrieben, um die Testergebnisse zu überprüfen. Um dieses Programm zu verwenden, führen Sie Ihre Übermittlung aus und leiten Sie die Ausgabe an eine Datei mit dem Namen steps.txt. Führen Sie dann dieses Programm mit steps.txtund der floodtestDatei in demselben Verzeichnis aus. Wenn Ihre Eingabe gültig ist und korrekte Lösungen für alle Dateien liefert, sollte sie alle Tests bestehen und zurückkehrenAll boards solved successfully.

import java.io.*;
import java.util.*;

public class PainterVerifier {

    public static void main(String[] args) throws FileNotFoundException {

        char[] board = new char[361];

        Scanner s = new Scanner(new File("steps.txt"));
        Scanner b = new Scanner(new File("floodtest"));

        int lineNum = 0;

        caseloop: while (b.hasNextLine()) {

            for (int l = 0; l < 19; l++) {
                String lineb = b.nextLine();
                if (lineb.isEmpty())
                    continue caseloop;
                System.arraycopy(lineb.toCharArray(), 0, board, l * 19, 19);
            }

            String line = s.nextLine();
            if (line.isEmpty())
                continue;
            char[] steps = line.toCharArray();

            Stack<Integer> nodes = new Stack<Integer>();

            for (char c : steps) {
                char targetColor = board[180];
                char replacementColor = c;

                nodes.push(180);

                while (!nodes.empty()) {
                    int n = nodes.pop();
                    if (n < 0 || n > 360)
                        continue;
                    if (board[n] == targetColor) {
                        board[n] = replacementColor;
                        if (n % 19 > 0)
                            nodes.push(n - 1);
                        if (n % 19 < 18)
                            nodes.push(n + 1);
                        if (n / 19 > 0)
                            nodes.push(n - 19);
                        if (n / 19 < 18)
                            nodes.push(n + 19);
                    }
                }
            }
            char center = board[180];
            for (char c : board)
                if (c != center) {
                    s.close();
                    b.close();

                    System.out.println("\nIncomplete board found!\n\tOn line " + lineNum + " of steps.txt");
                    System.exit(0);
                }

            if (lineNum % 5000 == 0)
                System.out.printf("Verification %d%c complete...\n", lineNum * 100 / 100000, '%');

            lineNum++;
        }
        s.close();
        b.close();
        System.out.println("All boards solved successfully.");
    }
}

Auch ein Scoreboard, da die Ergebnisse eigentlich nicht nach Punktzahl sortiert sind und es hier eigentlich sehr darauf ankommt:

  1. 1,985,078 - smack42, Java
  2. 2,075,452 - user1502040, C
  3. 2,098,382 - tigrou, C #
  4. 2,155,834 - CoderTao, C #
  5. 2,201,995 - MrBackend, Java
  6. 2.383.569 - CoderTao, C #
  7. 2.384.020 - Herjan, C
  8. 2 403 189 - Origineil, Java
  9. 2,445,761 - Herjan, C
  10. 2,475,056 - Jeremy List, Haskell
  11. 2,480,714 - SteelTermite, C (2,395 Byte)
  12. 2,480,714 - Herjan, Java (4,702 Byte)
  13. 2.588.847 - BurntPizza, Java (2.748 Byte)
  14. 2.588.847 - Gero3, node.js (4.641 Byte)
  15. 2 979 145 - Teun Pronk, Delphi XE3
  16. 4,780,841 - BurntPizza, Java
  17. 10.800.000 - Joe Z., Python
Joe Z.
quelle
2
Nach eigenen Angaben sollte die Ausgabe eigentlich keine Leerzeichen enthalten?
Martin Ender
5
Es ist erwähnenswert, dass die Testeingabedaten keine Leerzeichen zwischen den Zahlen enthalten.
nderscore
3
Du kannst es immer noch schreiben. Wenn es den aktuellen Gewinner unterbietet, werde ich die akzeptierte Antwort ändern.
Joe Z.
4
Die Zeitbeschränkung lautet: "Es muss schnell genug sein, damit Sie es ausführen und die tatsächlichen Ergebnisse hier veröffentlichen können."
Joe Z.
2
@AlexanderRevo Ich dachte, ich hätte die Datei nicht verschoben, aber anscheinend ist der Link aktiv und hat sich geändert, ohne dass ich das getan hätte. Hier ist nochmal der Link.
Joe Z.

Antworten:

4

Java - 1.985.078 Schritte

https://github.com/smack42/ColorFill

Noch ein verspäteter Einstieg. Die Ergebnisdatei mit den 1.985.078 Schritten finden Sie hier .

Einige Hintergrundinformationen:

Ich habe diese Herausforderung vor einigen Jahren entdeckt, als ich anfing, meinen eigenen Klon des Spiels Flood-it zu programmieren.

"Best-of-Incomplete" -DFS- und A * -Algorithmus
Von Anfang an wollte ich einen guten Lösungsalgorithmus für dieses Spiel erstellen. Mit der Zeit konnte ich meinen Solver verbessern, indem ich mehrere Strategien einbezog, die unterschiedliche unvollständige Suchen ausführten (ähnlich denjenigen, die in den anderen Programmen hier verwendet wurden), und indem ich das beste Ergebnis dieser Strategien für jede Lösung verwendete. Ich habe sogar den A * -Algorithmus von tigrou in Java erneut implementiert und meinem Solver hinzugefügt, um insgesamt bessere Lösungen als das Ergebnis von tigrou zu erzielen.

Umfassender DFS-Algorithmus
Dann habe ich mich auf einen Algorithmus konzentriert, der immer die optimalen Lösungen findet. Ich habe mich sehr bemüht, meine umfassende Tiefensuchstrategie zu optimieren. Um die Suche zu beschleunigen, habe ich eine Hashmap eingefügt, in der alle erkundeten Zustände gespeichert sind, sodass die Suche ein erneutes Erkunden dieser Zustände vermeiden kann. Während dieser Algorithmus gut funktioniert und alle 14x14-Rätsel schnell genug löst, verbraucht er zu viel Speicher und läuft mit den 19x19-Rätseln in dieser Code-Herausforderung sehr langsam.

Puchert A * -Algorithmus
Vor ein paar Monaten wurde ich kontaktiert, um den Flood-It-Löser von Aaron und Simon Puchert anzusehen . Dieses Programm verwendet einen Algorithmus vom Typ A * mit einer zulässigen Heuristik (im Gegensatz zu Tigrou) und einer Bewegungsbeschneidung ähnlich der Sprungpunktsuche. Mir ist schnell aufgefallen, dass dieses Programm sehr schnell ist und die optimalen Lösungen findet !

Natürlich musste ich diesen großartigen Algorithmus neu implementieren und zu meinem Programm hinzufügen. Ich habe versucht, mein Java-Programm so zu optimieren, dass es ungefähr so ​​schnell läuft wie das ursprüngliche C ++ - Programm der Brüder Puchert. Dann habe ich mich entschlossen, die 100.000 Testfälle dieser Herausforderung auszuprobieren. Auf meinem Computer lief das Programm mehr als 120 Stunden, um die 1.985.078 Schritte zu finden, wobei ich den Puchert A * -Algorithmus implementierte .

Dies ist die bestmögliche Lösung für diese Herausforderung, es sei denn, das Programm enthält einige Fehler, die zu suboptimalen Lösungen führen würden. Jede Rückmeldung ist willkommen!

edit: fügte relevante Teile des Codes hier hinzu:

Klasse AStarPuchertStrategy

/**
 * a specific strategy for the AStar (A*) solver.
 * <p>
 * the idea is taken from the program "floodit" by Aaron and Simon Puchert,
 * which can be found at <a>https://github.com/aaronpuchert/floodit</a>
 */
public class AStarPuchertStrategy implements AStarStrategy {

    private final Board board;
    private final ColorAreaSet visited;
    private ColorAreaSet current, next;
    private final short[] numCaNotFilledInitial;
    private final short[] numCaNotFilled;

    public AStarPuchertStrategy(final Board board) {
        this.board = board;
        this.visited = new ColorAreaSet(board);
        this.current = new ColorAreaSet(board);
        this.next = new ColorAreaSet(board);
        this.numCaNotFilledInitial = new short[board.getNumColors()];
        for (final ColorArea ca : board.getColorAreasArray()) {
            ++this.numCaNotFilledInitial[ca.getColor()];
        }
        this.numCaNotFilled = new short[board.getNumColors()];
    }

    /* (non-Javadoc)
     * @see colorfill.solver.AStarStrategy#setEstimatedCost(colorfill.solver.AStarNode)
     */
    @Override
    public void setEstimatedCost(final AStarNode node) {

        // quote from floodit.cpp: int State::computeValuation()
        // (in branch "performance")
        //
        // We compute an admissible heuristic recursively: If there are no nodes
        // left, return 0. Furthermore, if a color can be eliminated in one move
        // from the current position, that move is an optimal move and we can
        // simply use it. Otherwise, all moves fill a subset of the neighbors of
        // the filled nodes. Thus, filling that layer gets us at least one step
        // closer to the end.

        node.copyFloodedTo(this.visited);
        System.arraycopy(this.numCaNotFilledInitial, 0, this.numCaNotFilled, 0, this.numCaNotFilledInitial.length);
        {
            final ColorAreaSet.FastIteratorColorAreaId iter = this.visited.fastIteratorColorAreaId();
            int nextId;
            while ((nextId = iter.nextOrNegative()) >= 0) {
                --this.numCaNotFilled[this.board.getColor4Id(nextId)];
            }
        }

        // visit the first layer of neighbors, which is never empty, i.e. the puzzle is not solved yet
        node.copyNeighborsTo(this.current);
        this.visited.addAll(this.current);
        int completedColors = 0;
        {
            final ColorAreaSet.FastIteratorColorAreaId iter = this.current.fastIteratorColorAreaId();
            int nextId;
            while ((nextId = iter.nextOrNegative()) >= 0) {
                final byte nextColor = this.board.getColor4Id(nextId);
                if (--this.numCaNotFilled[nextColor] == 0) {
                    completedColors |= 1 << nextColor;
                }
            }
        }
        int distance = 1;

        while(!this.current.isEmpty()) {
            this.next.clear();
            final ColorAreaSet.FastIteratorColorAreaId iter = this.current.fastIteratorColorAreaId();
            int thisCaId;
            if (0 != completedColors) {
                // We can eliminate colors. Do just that.
                // We also combine all these elimination moves.
                distance += Integer.bitCount(completedColors);
                final int prevCompletedColors = completedColors;
                completedColors = 0;
                while ((thisCaId = iter.nextOrNegative()) >= 0) {
                    final ColorArea thisCa = this.board.getColorArea4Id(thisCaId);
                    if ((prevCompletedColors & (1 << thisCa.getColor())) != 0) {
                        // completed color
                        // expandNode()
                        for (final int nextCaId : thisCa.getNeighborsIdArray()) {
                            if (!this.visited.contains(nextCaId)) {
                                this.visited.add(nextCaId);
                                this.next.add(nextCaId);
                                final byte nextColor = this.board.getColor4Id(nextCaId);
                                if (--this.numCaNotFilled[nextColor] == 0) {
                                    completedColors |= 1 << nextColor;
                                }
                            }
                        }
                    } else {
                        // non-completed color
                        // move node to next layer
                        this.next.add(thisCaId);
                    }
                }
            } else {
                // Nothing found, do the color-blind pseudo-move
                // Expand current layer of nodes.
                ++distance;
                while ((thisCaId = iter.nextOrNegative()) >= 0) {
                    final ColorArea thisCa = this.board.getColorArea4Id(thisCaId);
                    // expandNode()
                    for (final int nextCaId : thisCa.getNeighborsIdArray()) {
                        if (!this.visited.contains(nextCaId)) {
                            this.visited.add(nextCaId);
                            this.next.add(nextCaId);
                            final byte nextColor = this.board.getColor4Id(nextCaId);
                            if (--this.numCaNotFilled[nextColor] == 0) {
                                completedColors |= 1 << nextColor;
                            }
                        }
                    }
                }
            }

            // Move the next layer into the current.
            final ColorAreaSet tmp = this.current;
            this.current = this.next;
            this.next = tmp;
        }
        node.setEstimatedCost(node.getSolutionSize() + distance);
    }

}

Teil der Klasse AStarSolver

private void executeInternalPuchert(final ColorArea startCa) throws InterruptedException {
    final Queue<AStarNode> open = new PriorityQueue<AStarNode>(AStarNode.strongerComparator());
    open.offer(new AStarNode(this.board, startCa));
    AStarNode recycleNode = null;
    while (open.size() > 0) {
        if (Thread.interrupted()) { throw new InterruptedException(); }
        final AStarNode currentNode = open.poll();
        if (currentNode.isSolved()) {
            this.addSolution(currentNode.getSolution());
            return;
        } else {
            // play all possible colors
            int nextColors = currentNode.getNeighborColors(this.board);
            while (0 != nextColors) {
                final int l1b = nextColors & -nextColors; // Integer.lowestOneBit()
                final int clz = Integer.numberOfLeadingZeros(l1b); // hopefully an intrinsic function using instruction BSR / LZCNT / CLZ
                nextColors ^= l1b; // clear lowest one bit
                final byte color = (byte)(31 - clz);
                final AStarNode nextNode = currentNode.copyAndPlay(color, recycleNode, this.board);
                if (null != nextNode) {
                    recycleNode = null;
                    this.strategy.setEstimatedCost(nextNode);
                    open.offer(nextNode);
                }
            }
        }
        recycleNode = currentNode;
    }
}

Teil der Klasse AStarNode

/**
 * check if this color can be played. (avoid duplicate moves)
 * the idea is taken from the program "floodit" by Aaron and Simon Puchert,
 * which can be found at <a>https://github.com/aaronpuchert/floodit</a>
 * @param nextColor
 * @return
 */
private boolean canPlay(final byte nextColor, final List<ColorArea> nextColorNeighbors) {
    final byte currColor = this.solution[this.solutionSize];
    // did the previous move add any new "nextColor" neighbors?
    boolean newNext = false;
next:   for (final ColorArea nextColorNeighbor : nextColorNeighbors) {
        for (final ColorArea prevNeighbor : nextColorNeighbor.getNeighborsArray()) {
            if ((prevNeighbor.getColor() != currColor) && this.flooded.contains(prevNeighbor)) {
                continue next;
            }
        }
        newNext = true;
        break next;
    }
    if (!newNext) {
        if (nextColor < currColor) {
            return false;
        } else {
            // should nextColor have been played before currColor?
            for (final ColorArea nextColorNeighbor : nextColorNeighbors) {
                for (final ColorArea prevNeighbor : nextColorNeighbor.getNeighborsArray()) {
                    if ((prevNeighbor.getColor() == currColor) && !this.flooded.contains(prevNeighbor)) {
                        return false;
                    }
                }
            }
            return true;
        }
    } else {
        return true;
    }
}

/**
 * try to re-use the given node or create a new one
 * and then play the given color in the result node.
 * @param nextColor
 * @param recycleNode
 * @return
 */
public AStarNode copyAndPlay(final byte nextColor, final AStarNode recycleNode, final Board board) {
    final List<ColorArea> nextColorNeighbors = new ArrayList<ColorArea>(128);  // constant, arbitrary initial capacity
    final ColorAreaSet.FastIteratorColorAreaId iter = this.neighbors.fastIteratorColorAreaId();
    int nextId;
    while ((nextId = iter.nextOrNegative()) >= 0) {
        final ColorArea nextColorNeighbor = board.getColorArea4Id(nextId);
        if (nextColorNeighbor.getColor() == nextColor) {
            nextColorNeighbors.add(nextColorNeighbor);
        }
    }
    if (!this.canPlay(nextColor, nextColorNeighbors)) {
        return null;
    } else {
        final AStarNode result;
        if (null == recycleNode) {
            result = new AStarNode(this);
        } else {
            // copy - compare copy constructor
            result = recycleNode;
            result.flooded.copyFrom(this.flooded);
            result.neighbors.copyFrom(this.neighbors);
            System.arraycopy(this.solution, 0, result.solution, 0, this.solutionSize + 1);
            result.solutionSize = this.solutionSize;
            //result.estimatedCost = this.estimatedCost;  // not necessary to copy
        }
        // play - compare method play()
        for (final ColorArea nextColorNeighbor : nextColorNeighbors) {
            result.flooded.add(nextColorNeighbor);
            result.neighbors.addAll(nextColorNeighbor.getNeighborsIdArray());
        }
        result.neighbors.removeAll(result.flooded);
        result.solution[++result.solutionSize] = nextColor;
        return result;
    }
}
smack42
quelle
2
Willkommen bei PPCG! Könnten Sie den relevanten Code für den Löser in die Antwort selbst aufnehmen, damit er in sich geschlossen ist, sollte sich Ihr Github-Repo jemals bewegen oder fallen?
Martin Ender
Die wichtigsten Teile des Codes wurden hier hinzugefügt: Meine Implementierung des "Puchert A * -Algorithmus". (Dieser Code-Auszug ist nicht eigenständig und kann nicht wie
besehen
Ich bin froh, dass jemand eine perfekte / optimale Lösung dafür gefunden hat. Auf der anderen Seite bedeutet dies jedoch, dass es keine Konkurrenz / neuen Antworten mehr geben wird.
10.
15

C # - 2,098,382 Schritte

Ich probiere viele Dinge aus, die meisten scheitern und haben bis vor kurzem überhaupt nicht funktioniert. Ich habe etwas Interessantes, um eine Antwort zu schreiben.

Es gibt sicherlich Möglichkeiten, dies weiter zu verbessern. Ich denke, dass es möglich sein könnte, unter die 2M-Schritte zu gehen.

Es dauerte ca. 7 hoursErgebnisse zu generieren. Hier ist eine txt-Datei mit allen Lösungen, falls jemand sie überprüfen möchte: results.zip

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;

namespace FloodPaintAI
{
    class Node
    {   
        public byte Value;             //1-6
        public int Index;              //unique identifier, used for easily deepcopying the graph
        public List<Node> Neighbours;  
        public List<Tuple<int, int>> NeighboursPositions; //used by BuildGraph() 

        public int Depth;    //used by GetSumDistances() 
        public bool Checked; // 

        public Node(byte value, int index)
        {
            Value = value;      
            Index = index;          
        }

        public Node(Node node)
        {           
            Value = node.Value; 
            Index = node.Index;                     
        }
    }

    class Board
    {
        private const int SIZE = 19;
        private const int STARTPOSITION = 9;

        public Node Root;         //root of graph. each node is a set of contiguous, same color square
        public List<Node> Nodes;  //all nodes in the graph, used for deep copying


        public int EstimatedCost; //estimated cost, used by A* Pathfinding
        public List<byte> Solution;

        public Board(StreamReader input)
        {                   
            byte[,] board = new byte[SIZE, SIZE];
            for(int j = 0 ; j < SIZE ; j++)
            {
                string line = input.ReadLine();
                for(int i = 0 ; i < SIZE ; i++)         
                {                                       
                    board[j, i] = byte.Parse(line[i].ToString());
                }               
            }
            Solution = new List<byte>();
            BuildGraph(board);  
        }

        public Board(Board boardToCopy)
        {               
            //copy the graph            
            Nodes = new List<Node>(boardToCopy.Nodes.Count);
            foreach(Node nodeToCopy in boardToCopy.Nodes)
            {
                Node node = new Node(nodeToCopy);
                Nodes.Add(node);
            }

            //copy "Neighbours" property
            for(int i = 0 ; i < boardToCopy.Nodes.Count ; i++)
            {
                Node node = Nodes[i];
                Node nodeToCopy = boardToCopy.Nodes[i];

                node.Neighbours = new List<Node>(nodeToCopy.Neighbours.Count);
                foreach(Node neighbour in nodeToCopy.Neighbours)
                {
                    node.Neighbours.Add(Nodes[neighbour.Index]);
                }
            }

            Root = Nodes[boardToCopy.Root.Index];
            EstimatedCost = boardToCopy.EstimatedCost;          
            Solution = new List<byte>(boardToCopy.Solution);            
        }

        private void BuildGraph(byte[,] board)
        {                       
            int[,] nodeIndexes = new int[SIZE, SIZE];
            Nodes = new List<Node>();

            //check how much sets we have (1st pass)
            for(int j = 0 ; j < SIZE ; j++)
            {
                for(int i = 0 ; i < SIZE ; i++)         
                {               
                    if(nodeIndexes[j, i] == 0) //not already visited                    
                    {
                        Node newNode = new Node(board[j, i], Nodes.Count);                      
                        newNode.NeighboursPositions = new List<Tuple<int, int>>();
                        Nodes.Add(newNode);

                        BuildGraphFloodFill(board, nodeIndexes, newNode, i, j, board[j, i]);
                    }
                }       
            }

            //set neighbours and root (2nd pass)
            foreach(Node node in Nodes)
            {
                node.Neighbours = new List<Node>();
                node.Neighbours.AddRange(node.NeighboursPositions.Select(x => nodeIndexes[x.Item2, x.Item1]).Distinct().Select(x => Nodes[x - 1]));
                node.NeighboursPositions = null;                
            }
            Root = Nodes[nodeIndexes[STARTPOSITION, STARTPOSITION] - 1];            
        }

        private void BuildGraphFloodFill(byte[,] board, int[,] nodeIndexes, Node node, int startx, int starty, byte floodvalue)
        {
            Queue<Tuple<int, int>> queue = new Queue<Tuple<int, int>>();
            queue.Enqueue(new Tuple<int, int>(startx, starty));

            while(queue.Count > 0)
            {
                Tuple<int, int> position = queue.Dequeue();
                int x = position.Item1;
                int y = position.Item2;

                if(x >= 0 && x < SIZE && y >= 0 && y < SIZE)
                {
                    if(nodeIndexes[y, x] == 0 && board[y, x] == floodvalue)
                    {
                        nodeIndexes[y, x] = node.Index + 1;

                        queue.Enqueue(new Tuple<int, int>(x + 1, y));
                        queue.Enqueue(new Tuple<int, int>(x - 1, y));
                        queue.Enqueue(new Tuple<int, int>(x, y + 1));
                        queue.Enqueue(new Tuple<int, int>(x, y - 1));                                           
                    }               
                    if(board[y, x] != floodvalue)
                        node.NeighboursPositions.Add(position);                         
                }       
            }
        }

        public int GetEstimatedCost()
        {       
            Board current = this;

            //copy current board and play the best color until the end.
            //number of moves required to go the end is the heuristic
            //estimated cost = current cost + heuristic
            while(!current.IsSolved())
            {
                int minSumDistance = int.MaxValue;
                Board minBoard = null;

                //find color which give the minimum sum of distance from root to each other node
                foreach(byte i in current.Root.Neighbours.Select(x => x.Value).Distinct())
                {
                    Board copy = new Board(current);
                    copy.Play(i);                   

                    int distance = copy.GetSumDistances();                  

                    if(distance < minSumDistance)
                    {
                        minSumDistance = distance;
                        minBoard = copy;
                    }
                }
                current = minBoard;
            }           
            return current.Solution.Count;
        }

        public int GetSumDistances()
        {
            //get sum of distances from root to each other node, using BFS
            int sumDistances = 0;           

            //reset marker
            foreach(Node n in Nodes)
            {
                n.Checked = false;                                  
            }

            Queue<Node> queue = new Queue<Node>();
            Root.Checked = true;
            Root.Depth = 0; 
            queue.Enqueue(Root);

            while(queue.Count > 0)
            {
                Node current = queue.Dequeue();                             
                foreach(Node n in current.Neighbours)
                {
                    if(!n.Checked)          
                    {                                   
                        n.Checked = true;                                               
                        n.Depth = current.Depth + 1;
                        sumDistances += n.Depth;            
                        queue.Enqueue(n);   
                    }               
                }
            }
            return sumDistances;
        }       

        public void Play(byte value)            
        {
            //merge root node with other neighbours nodes, if color is matching
            Root.Value = value;
            List<Node> neighboursToRemove = Root.Neighbours.Where(x => x.Value == value).ToList();
            List<Node> neighboursToAdd = neighboursToRemove.SelectMany(x => x.Neighbours).Except((new Node[] { Root }).Concat(Root.Neighbours)).ToList();

            foreach(Node n in neighboursToRemove)
            {
                foreach(Node m in n.Neighbours)
                {
                    m.Neighbours.Remove(n);
                }
                Nodes.Remove(n);
            }   

            foreach(Node n in neighboursToAdd)
            {
                Root.Neighbours.Add(n);         
                n.Neighbours.Add(Root); 
            }           

            //re-synchronize node index
            for(int i = 0 ; i < Nodes.Count ; i++)
            {
                Nodes[i].Index = i;
            }           
            Solution.Add(value);
        }

        public bool IsSolved()
        {           
            //return Nodes.Count == 1;
            return Root.Neighbours.Count == 0;  
        }           
    }


    class Program
    {       
        public static List<byte> Solve(Board input)
        {
            //A* Pathfinding            
            LinkedList<Board> open = new LinkedList<Board>();       
            input.EstimatedCost = input.GetEstimatedCost();
            open.AddLast(input);            

            while(open.Count > 0)
            {                       
                Board current = open.First.Value;
                open.RemoveFirst();

                if(current.IsSolved())
                {
                    return current.Solution;                
                }
                else
                {
                    //play all neighbours nodes colors
                    foreach(byte i in current.Root.Neighbours.Select(x => x.Value).Distinct())
                    {                       
                        Board newBoard = new Board(current);
                        newBoard.Play(i);           
                        newBoard.EstimatedCost = newBoard.GetEstimatedCost();   

                        //insert board to open list
                        bool inserted = false;
                        for(LinkedListNode<Board> node = open.First ; node != null ; node = node.Next)
                        {                               
                            if(node.Value.EstimatedCost > newBoard.EstimatedCost)
                            {
                                open.AddBefore(node, newBoard);
                                inserted = true;
                                break;
                            }
                        }       
                        if(!inserted)
                            open.AddLast(newBoard);                                                 
                    }   
                }   
            }
            throw new Exception(); //no solution found, impossible
        }   

        public static void Main(string[] args)
        {                   
            using (StreamReader sr = new StreamReader("floodtest"))
            {   
                while(!sr.EndOfStream)
                {                               
                    List<Board> boards = new List<Board>();
                    while(!sr.EndOfStream && boards.Count < 100)
                    {
                        Board board = new Board(sr);                        
                        sr.ReadLine(); //skip empty line
                        boards.Add(board);
                    }                                           
                    List<byte>[] solutions = new List<byte>[boards.Count];                                          
                    Parallel.For(0, boards.Count, i => 
                    {                               
                        solutions[i] = Solve(boards[i]); 
                    });                                         
                    foreach(List<byte> solution in solutions)
                    {
                        Console.WriteLine(string.Join(string.Empty, solution));                                             
                    }       
                }               
            }
        }
    }
}

Weitere Details zur Funktionsweise:

Es wird ein A * Pathfinding- Algorithmus verwendet.

Was schwierig ist, ist ein gutes zu finden heuristic. Wenn heuristices die Kosten unterschätzt, funktioniert es fast wie der Dijkstra- Algorithmus und aufgrund der Komplexität eines 19x19-Boards mit 6 Farben wird es für immer laufen. Wenn es die Kosten überschätzt, kommt es schnell zu einer Lösung, aber es gibt überhaupt keine guten (26 Züge waren möglich, 19 waren möglich). Das Finden des Perfekten heuristic, das die genaue verbleibende Menge an Schritten zum Erreichen der Lösung ergibt, wäre das Beste (es wäre schnell und würde die bestmögliche Lösung ergeben). Es ist (sofern ich mich nicht irre) unmöglich. Es ist tatsächlich erforderlich, zuerst das Brett selbst zu lösen, während Sie dies tatsächlich versuchen (Henne-Ei-Problem).

Ich habe viele Dinge ausprobiert heuristic:

  • Ich erstelle eine Grafik der aktuellen Karte, um sie auszuwerten. Jedes nodestellt eine Reihe zusammenhängender, gleichfarbiger Quadrate dar. Auf diese Weise graphkann ich leicht den genauen Mindestabstand vom Mittelpunkt zu jedem anderen Knoten berechnen. Zum Beispiel wäre der Abstand von der Mitte nach links oben 10, da mindestens 10 Farben sie trennen.
  • Zur Berechnung heuristic: Ich spiele das aktuelle Brett bis zum Ende. Für jeden Schritt wähle ich die Farbe, mit der die Summe der Entfernungen von der Wurzel zu allen anderen Knoten minimiert wird.
  • Die Anzahl der Züge, die benötigt werden, um dieses Ziel zu erreichen, ist die heuristic.

  • Estimated cost(verwendet von A *) = moves so far+heuristic

Es ist nicht perfekt, da es die Kosten leicht überschätzt (daher wird keine optimale Lösung gefunden). Wie auch immer, es ist schnell zu berechnen und gute Ergebnisse zu liefern.

Ich konnte eine enorme Geschwindigkeitsverbesserung erzielen, indem ich alle Operationen mithilfe eines Diagramms ausführte. Am Anfang hatte ich eine 2-dimensionReihe. Ich überschwemme es und berechne den Graphen bei Bedarf neu (zB um die Heuristik zu berechnen). Jetzt wird alles mit der Grafik erledigt, die erst am Anfang berechnet wurde. Um Schritte zu simulieren, wird keine Überflutung mehr benötigt. Stattdessen füge ich Knoten zusammen. Das geht viel schneller.

tigrou
quelle
2
Bitte nicht code blockszum Hervorheben von Text verwenden. Wir haben es kursiv und fett geschrieben .
Nic Hartley
10

Python - 10.800.000 Schritte

Betrachten Sie als letzte Referenzlösung die folgende Reihenfolge:

print "123456" * 18

Durchlaufen Sie alle Farbzeiten, um nsicherzustellen, dass jedes Quadrat nin der gleichen Farbe wie das mittlere Quadrat ist. Jedes Quadrat ist höchstens 18 Schritte vom Zentrum entfernt, so dass 18 Zyklen garantieren, dass alle Quadrate die gleiche Farbe haben. Höchstwahrscheinlich dauert es weniger, aber das Programm muss nicht angehalten werden, sobald alle Quadrate dieselbe Farbe haben. Es ist einfach viel vorteilhafter, dies zu tun. Diese konstante Prozedur umfasst 108 Schritte pro Testfall mit insgesamt 10.800.000 Schritten.

Joe Z.
quelle
Brute-Force-Methode, ernst ...? Joe, ich dachte du hättest ein bisschen mehr Erfahrung, um es besser zu wissen, Kumpel?
WallyWest
2
Es ist nicht als ernst zu nehmender Eintrag gedacht. Beachten Sie, dass ich es speziell als eine Lösung aufstellte, um an letzter Stelle als Alleskönner aufzutreten . Jeder ernsthafte Eintrag hätte eine viel niedrigere Punktzahl als dieser.
Joe Z.
Sollte es keine Leerzeichen geben? B. in 1 2 3 4 5 6 ...statt deiner jetzigen Lösung was gibt 123456....
User80551
1
Wäre der optimale Algorithmus für Codegolf (in einer anderen Sprache, obwohl "print" zu viele Zeichen enthält).
Cruncher
1
Ich glaube auch nicht, dass der schlimmste Fall von 18 Schritten überhaupt möglich ist . Aber natürlich wissen wir, dass es keinen schlimmeren Fall gibt, also funktioniert das definitiv :)
Cruncher
8

Java - 2.480.714 Schritte

Ich habe vorher einen kleinen Fehler gemacht (ich habe einen entscheidenden Satz vor eine Schleife gesetzt anstatt in die Schleife:

import java.io.*;

public class HerjanPaintAI {

    BufferedReader r;
    String[] map = new String[19];
    char[][] colors = new char[19][19];
    boolean[][] reached = new boolean[19][19], checked = new boolean[19][19];
    int[] colorCounter = new int[6];
    String answer = "";
    int mapCount = 0, moveCount = 0;

    public HerjanPaintAI(){
        nextMap();

        while(true){

            int bestMove = nextRound();
            answer += bestMove;
            char t = Character.forDigit(bestMove, 10);
            for(int x = 0; x < 19; x++){
                for(int y = 0; y < 19; y++){
                    if(reached[x][y]){
                        colors[x][y] = t;
                    }else if(checked[x][y]){
                        if(colors[x][y] == t){
                            reached[x][y] = true;
                        }
                    }
                }
            }

            boolean gameOver = true;
            for(int x = 0; x < 19; x++){
                for(int y = 0; y < 19; y++){
                    if(!reached[x][y]){
                        gameOver = false;
                        break;
                    }
                }
            }

            for(int x = 0; x < 19; x++){
                for(int y = 0; y < 19; y++){
                    checked[x][y] = false;
                }
            }
            for(int i = 0; i < 6; i++)
                colorCounter[i] = 0;

            if(gameOver)
                nextMap();
        }
    }

    int nextRound(){
        for(int x = 0; x < 19; x++){
            for(int y = 0; y < 19; y++){
                if(reached[x][y]){//check what numbers are next to the reached numbers...
                    check(x, y);
                }
            }
        }

        int[] totalColorCount = new int[6];
        for(int x = 0; x < 19; x++){
            for(int y = 0; y < 19; y++){
                totalColorCount[Character.getNumericValue(colors[x][y])-1]++;
            }
        }

        for(int i = 0; i < 6; i++){
            if(totalColorCount[i] != 0 && totalColorCount[i] == colorCounter[i]){//all of this color can be reached
                return i+1;
            }
        }

        int index = -1, number = 0;
        for(int i = 0; i < 6; i++){
            if(colorCounter[i] > number){
                index = i;
                number = colorCounter[i];
            }
        }

        return index+1;
    }

    void check(int x, int y){
        if(x<18)
            handle(x+1, y, x, y);
        if(x>0)
            handle(x-1, y, x, y);
        if(y<18)
            handle(x, y+1, x, y);
        if(y>0)
            handle(x, y-1, x, y);
    }

    void handle(int x2, int y2, int x, int y){
        if(!reached[x2][y2] && !checked[x2][y2]){
            checked[x2][y2] = true;
            if(colors[x2][y2] == colors[x][y]){
                reached[x2][y2] = true;
                check(x2, y2);
            }else{
                colorCounter[Character.getNumericValue(colors[x2][y2])-1]++;
                checkAround(x2, y2);
            }
        }
    }

    void checkAround(int x2, int y2){
        if(x2<18)
            handleAround(x2+1, y2, x2, y2);
        if(x2>0)
            handleAround(x2-1, y2, x2, y2);
        if(y2<18)
            handleAround(x2, y2+1, x2, y2);
        if(y2>0)
            handleAround(x2, y2-1, x2, y2);
    }

    void handleAround(int x2, int y2, int x, int y){
        if(!reached[x2][y2] && !checked[x2][y2]){
            if(colors[x2][y2] == colors[x][y]){
                checked[x2][y2] = true;
                colorCounter[Character.getNumericValue(colors[x2][y2])-1]++;
                checkAround(x2, y2);
            }
        }
    }

    void nextMap(){
        moveCount += answer.length();
        System.out.println(answer);
        answer = "";

        for(int x = 0; x < 19; x++){
            for(int y = 0; y < 19; y++){
                reached[x][y] = false;
            }
        }

        reached[9][9] = true;

        try {
            if(r == null)
                r = new BufferedReader(new FileReader("floodtest"));

            for(int i = 0; i < 19; i++){
                map[i] = r.readLine();
            }
            r.readLine();//empty line

            if(map[0] == null){
                System.out.println("Maps solved: " + mapCount + " Steps: " + moveCount);
                r.close();
                System.exit(0);
            }
        } catch (Exception e) {e.printStackTrace();}

        mapCount++;

        for(int x = 0; x < 19; x++){
            colors[x] = map[x].toCharArray();
        }
    }

    public static void main(String[] a){
        new HerjanPaintAI();
    }
}
Herjan
quelle
Wie lange hat das gedauert?
Alexander-Brett
@ Ali0sha Mein PC dauerte nicht einmal eine halbe Minute
Herjan
Na Mist. Meins läuft seit einer halben Stunde ...
Alexander-Brett
Golfen ist übrigens nicht erforderlich.
Joe Z.
1
@m.buettner Apropos Teufel, jemand hat diese Lösung (und hatte kürzeren Code) drei Stunden nachdem du das gesagt hast gebunden .
Joe Z.
5

C - 2,075,452

Ich weiß, dass ich zu spät zur Party komme, aber ich habe diese Herausforderung gesehen und wollte es versuchen.

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>

uint64_t rand_state;

uint64_t rand_u64(void) {
    return (rand_state = rand_state * 6364136223846793005ULL + 1442695040888963407ULL);
}

uint64_t better_rand_u64(void) {
    uint64_t r = rand_u64();
    r ^= ((r >> 32) >> (r >> 60));
    return r + 1442695040888963407ULL;
}

uint32_t rand_u32(void) {return rand_u64() >> 32;}

float normal(float mu, float sigma) {
    uint64_t t = 0;
    for (int i = 0; i < 6; i++) {
        uint64_t r = rand_u64();
        uint32_t a = r;
        uint32_t b = r >> 32;
        t += a;
        t += b;
    }
    return ((float)t / (float)UINT32_MAX - 6) * sigma + mu;
}

typedef struct {
    uint8_t x;
    uint8_t y;
} Position;

#define ncolors 6
#define len 19
#define cells (len * len)
#define max_steps (len * (ncolors - 1))
#define center_x 9
#define center_y 9
#define center ((Position){center_x, center_y})

uint64_t zobrist_table[len][len];

void init_zobrist() {
    for (int y = 0; y < len; y++) {
        for (int x = 0; x < len; x++) {
            zobrist_table[y][x] = better_rand_u64();
        }
    }
}

typedef struct {
    uint64_t hash;
    uint8_t grid[len][len];
    bool interior[len][len];
    int boundary_size;
    Position boundary[cells];
} Grid;


void transition(Grid* grid, uint8_t color, int* surrounding_counts) {
    int i = 0;
    while (i < grid->boundary_size) {
        Position p = grid->boundary[i];
        uint8_t x = p.x;
        uint8_t y = p.y;
        bool still_boundary = false;
        for (int dx = -1; dx <= 1; dx++) {
            for (int dy = -1; dy <= 1; dy++) {
                if (!(dx == 0 || dy == 0)) {
                    continue;
                }
                int8_t x1 = x + dx;
                if (!(0 <= x1 && x1 < len)) {
                    continue;
                }
                int8_t y1 = y + dy;
                if (!(0 <= y1 && y1 < len)) {
                    continue;
                }
                if (grid->interior[y1][x1]) {
                    continue;
                }
                uint8_t color1 = grid->grid[y1][x1];
                if (color1 == color) {
                    grid->boundary[grid->boundary_size++] = (Position){x1, y1};
                    grid->interior[y1][x1] = true;
                    grid->hash ^= zobrist_table[y1][x1];
                } else {
                    surrounding_counts[color1]++;
                    still_boundary = true;
                }
            }
        }
        if (still_boundary) {
            i += 1;
        } else {
            grid->boundary[i] = grid->boundary[--grid->boundary_size]; 
        }
    }
}

void reset_grid(Grid* grid, int* surrounding_counts) {
    grid->hash = 0;
    memset(surrounding_counts, 0, ncolors * sizeof(int)); 
    memset(&grid->interior, 0, sizeof(grid->interior));
    grid->interior[center_y][center_x] = true;
    grid->boundary_size = 0;
    grid->boundary[grid->boundary_size++] = center; 
    transition(grid, grid->grid[center_y][center_x], surrounding_counts);
}

bool load_grid(FILE* fp, Grid* grid) {
    memset(grid, 0, sizeof(*grid));
    char buf[19 + 2];
    size_t row = 0;
    while ((fgets(buf, sizeof(buf), fp)) && row < 19) {
        if (strlen(buf) != 20) {
            break;
        }
        for (int i = 0; i < 19; i++) {
            if (!('1' <= buf[i] && buf[i] <= '6')) {
                return false;
            }
            grid->grid[row][i] = buf[i] - '1';
        }
        row++;
    }
    return row == 19;
}

typedef struct Node Node;

struct Node {
    uint64_t hash;
    float visit_counts[ncolors];
    float mean_cost[ncolors];
    float sse[ncolors];
};

#define iters 15000
#define pool_size 32768
#define pool_nodes (pool_size + 100)
#define pool_mask (pool_size - 1)

Node pool[pool_nodes];

void init_node(Node* node, uint64_t hash, int* surrounding_counts) {
    node->hash = hash;
    for (int i = 0; i < ncolors; i++) {
        if (surrounding_counts[i]) {
            node->visit_counts[i] = 1;
            node->mean_cost[i] = 20;
            node->sse[i] = 400;
        }
    }
}

Node* lookup_node(uint64_t hash) {
    size_t index = hash & pool_mask;
    for (int i = index;; i++) {
        uint64_t h = pool[i].hash;
        if (h == hash || !h) {
            return pool + i;
        }
    }
}

int rollout(Grid* grid, int* surrounding_counts, char* solution) {
    for (int i = 0;; i++) {
        int nonzero = 0;
        uint8_t colors[6];
        for (int i = 0; i < ncolors; i++) {
            if (surrounding_counts[i]) {
                colors[nonzero++] = i;
            }
        }
        if (!nonzero) {
            return i;
        }
        uint8_t color = colors[rand_u32() % nonzero]; 
        *(solution++) = color;
        assert(grid->boundary_size);
        memset(surrounding_counts, 0, 6 * sizeof(int));
        transition(grid, color, surrounding_counts);
    }
}

int simulate(Node* node, Grid* grid, int depth, char* solution) {
    float best_cost = INFINITY;
    uint8_t best_color = 255;
    for (int color = 0; color < ncolors; color++) {
        float n = node->visit_counts[color];
        if (node->visit_counts[color] == 0) {
            continue;
        }
        float sigma = sqrt(node->sse[color] / (n * n));
        float cost = node->mean_cost[color];
        cost = normal(cost, sigma);
        if (cost < best_cost) {
            best_color = color;
            best_cost = cost;
        }
    }
    if (best_color == 255) {
        return 0;
    }
    *solution++ = best_color;
    int score;
    int surrounding_counts[ncolors] = {0};
    transition(grid, best_color, surrounding_counts);
    Node* child = lookup_node(grid->hash);
    if (!child->hash) {
        init_node(child, grid->hash, surrounding_counts);
        score = rollout(grid, surrounding_counts, solution);
    } else {
        score = simulate(child, grid, depth + 1, solution);
    }
    score++;
    float n1 = ++node->visit_counts[best_color];
    float u0 = node->mean_cost[best_color];
    float u1 = node->mean_cost[best_color] = u0 + (score - u0) / n1;
    node->sse[best_color] += (score - u0) * (score - u1);
    return score;
}

int main(void) {
    FILE* fp;
    if (!(fp = fopen("floodtest", "r"))) {
        return 1;
    }
    Grid grid;
    init_zobrist();
    while (load_grid(fp, &grid)) {

        memset(pool, 0, sizeof(pool));
        int surrounding_counts[ncolors] = {0};

        reset_grid(&grid, surrounding_counts);
        Node root = {0};

        init_node(&root, grid.hash, surrounding_counts);

        char solution[max_steps] = {0};
        char best_solution[max_steps] = {0};

        int min_score = INT_MAX;

        uint64_t prev_hash = 0;
        uint64_t hash = 0;
        int same_count = 0;

        for (int iter = 0; iter < iters; iter++) {
            reset_grid(&grid, surrounding_counts);
            int score = simulate(&root, &grid, 1, solution);
            if (score < min_score) {
                min_score = score;
                memcpy(best_solution, solution, score);
            }
            hash = 0;
            for (int i = 0; i < score; i++) {
                hash ^= zobrist_table[i%len][(int)solution[i]];
            }
            if (hash == prev_hash) {
                same_count++;
                if (same_count >= 10) {
                    break;
                }
            } else {
                same_count = 0;
                prev_hash = hash;
            }
        }
        int i;
        for (i = 0; i < min_score; i++) {
            best_solution[i] += '1';
        }
        best_solution[i++] = '\n';
        best_solution[i++] = '\0';
        printf(best_solution);
        fflush(stdout);
    }
    return 0;
}

Der Algorithmus basiert auf der Monte-Carlo-Baumsuche mit Thompson-Abtastung und einer Transpositionstabelle zur Reduzierung des Suchraums. Es dauert ungefähr 12 Stunden auf meiner Maschine. Wenn Sie die Ergebnisse überprüfen möchten, finden Sie sie unter https://dropfile.to/pvjYDMV .

user1502040
quelle
Benutzer smack42 schlägt vor, hash ^= zobrist_table[i][(int)solution[i]];zu hash ^= zobrist_table[i%len][(int)solution[i]];zu wechseln , um den Programmabsturz zu beheben.
Stephen
@StepHen Ich sehe nicht, wie eine Punktzahl größer als len sein kann. Haben Sie eine Eingabe, die diesen Absturz verursacht? Haben Sie einen Link zu Ihrem Gespräch mit smak42? Auch wenn es nicht zum Absturz kommen kann, kann es nicht schaden, mit Code, der nicht leistungskritisch ist, auf der sicheren Seite zu sein.
user1502040
Nein, entschuldigung, es wurden Änderungsvorschläge gemacht. Hier ist die Bewertung: codegolf.stackexchange.com/review/suggested-edits/42008
Stephen
+1 dafür, dass du mich geschlagen hast. Aber Vorsicht, es könnte Verbesserungen geben;)
tigrou
4

Java - 2.434.108 2.588.847 Schritte

Derzeit siegreich (~ 46K vor Herjan) am 26.4

Welp, MrBackend hat mich also nicht nur geschlagen, sondern ich habe auch einen Fehler gefunden, der zu einem täuschend guten Ergebnis geführt hat. Es ist jetzt behoben (war auch im Verifier! Ack), aber leider habe ich im Moment keine Zeit, um zu versuchen, die Krone zurückzunehmen. Werde es später versuchen.

Dies basiert auf meiner anderen Lösung, aber anstatt mit der Farbe zu malen, die am häufigsten für die Füllkanten verwendet wird, wird mit der Farbe gemalt, die dazu führt, dass Kanten mit vielen benachbarten Quadraten derselben Farbe belichtet werden. Nennen Sie es LookAheadPainter. Ich werde es später bei Bedarf Golf spielen.

import java.io.*;
import java.util.*;

public class LookAheadPainter {

    static final boolean PRINT_FULL_OUTPUT = true;

    public static void main(String[] a) throws IOException {

        int totalSteps = 0, numSolved = 0;

        char[] board = new char[361];
        Scanner s = new Scanner(new File("floodtest"));
        long startTime = System.nanoTime();

        caseloop: while (s.hasNextLine()) {
            for (int l = 0; l < 19; l++) {
                String line = s.nextLine();
                if (line.isEmpty())
                    continue caseloop;
                System.arraycopy(line.toCharArray(), 0, board, l * 19, 19);
            }

            List<Character> colorsUsed = new ArrayList<>();

            for (;;) {

                FillResult fill = new FillResult(board, board[180], (char) 48, null);

                if (fill.nodesFilled.size() == 361)
                    break;

                int[] branchSizes = new int[7];

                for (int i = 1; i < 7; i++) {
                    List<Integer> seeds = new ArrayList<>();
                    for (Integer seed : fill.edges)
                        if (board[seed] == i + 48)
                            seeds.add(seed);

                    branchSizes[i] = new FillResult(fill.filledBoard, (char) (i + 48), (char) 48, seeds).nodesFilled.size();
                }

                int maxSize = 0;
                char bestColor = 0;

                for (int i = 1; i < 7; i++)
                    if (branchSizes[i] > maxSize) {
                        maxSize = branchSizes[i];
                        bestColor = (char) (i + 48);
                    }

                for (int i : fill.nodesFilled)
                    board[i] = bestColor;

                colorsUsed.add(bestColor);
                totalSteps++;
            }
            numSolved++;

            if (PRINT_FULL_OUTPUT) {
                if (numSolved % 1000 == 0)
                    System.out.println("Solved: " + numSolved); // So you know it's working
                String out = "";
                for (Character c : colorsUsed)
                    out += c;
                System.out.println(out);
            }

        }
        s.close();
        System.out.println("\nTotal steps to solve all cases: " + totalSteps);
        System.out.printf("\nSolved %d test cases in %.2f seconds", numSolved, (System.nanoTime() - startTime) / 1000000000.);
    }

    private static class FillResult {

        Set<Integer> nodesFilled, edges;
        char[] filledBoard;

        FillResult(char[] board, char target, char replacement, List<Integer> seeds) {
            Stack<Integer> nodes = new Stack<>();
            nodesFilled = new HashSet<>();
            edges = new HashSet<>();

            if (seeds == null)
                nodes.push(180);
            else
                for (int i : seeds)
                    nodes.push(i);

            filledBoard = new char[361];
            System.arraycopy(board, 0, filledBoard, 0, 361);

            while (!nodes.empty()) {
                int n = nodes.pop();
                if (n < 0 || n > 360)
                    continue;
                if (filledBoard[n] == target) {
                    filledBoard[n] = replacement;
                    nodesFilled.add(n);
                    if (n % 19 > 0)
                        nodes.push(n - 1);
                    if (n % 19 < 18)
                        nodes.push(n + 1);
                    if (n / 19 > 0)
                        nodes.push(n - 19);
                    if (n / 19 < 18)
                        nodes.push(n + 19);
                } else
                    edges.add(n);
            }
        }
    }
}

BEARBEITEN: Ich habe einen Prüfer geschrieben, den Sie gerne benutzen können. Er erwartet eine steps.txt-Datei, die die von Ihrem Programm ausgegebenen Schritte sowie die Floodtest-Datei enthält: Bearbeiten-Bearbeiten: (siehe OP)

Wenn jemand ein Problem findet, melde es mir bitte!

Gebrannte Pizza
quelle
Schön, Pizza! Und dieser Prüfer ist in der Tat ein kluger! Das OP hätte so etwas / ein Steuerungsprogramm machen sollen (das hätte eine Menge Probleme gelöst).
Herjan
3

C - 2.480.714 Schritte

Immer noch nicht optimal, aber jetzt ist es schneller und punktet besser.

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

char map[19][19], reach[19][19];
int reachsum[6], totalsum[6];

bool loadmap(FILE *fp)
{
    char buf[19 + 2];
    size_t row = 0;

    while (fgets(buf, sizeof buf, fp) && row < 19) {
        if (strlen(buf) != 20)
            break;
        memcpy(map[row++], buf, 19);
    }
    return row == 19;
}

void calcreach(bool first, size_t row, size_t col);
void check(char c, bool first, size_t row, size_t col)
{
    if (map[row][col] == c)
        calcreach(first, row, col);
    else if (first)
        calcreach(false, row, col);
}

void calcreach(bool first, size_t row, size_t col)
{
    char c = map[row][col];

    reach[row][col] = c;
    reachsum[c - '1']++;
    if (row < 18 && !reach[row + 1][col])
        check(c, first, row + 1, col);
    if (col < 18 && !reach[row][col + 1])
        check(c, first, row, col + 1);
    if (row > 0 && !reach[row - 1][col])
        check(c, first, row - 1, col);
    if (col > 0 && !reach[row][col - 1])
        check(c, first, row, col - 1);
}

void calctotal()
{
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            totalsum[map[row][col] - '1']++;
}

void apply(char c)
{
    char d = map[9][9];
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            if (reach[row][col] == d)
                map[row][col] = c;
}

int main()
{
    char c, best;
    size_t steps = 0;
    FILE *fp;

    if (!(fp = fopen("floodtest", "r")))
        return 1;

    while (loadmap(fp)) {
        do {
            memset(reach, 0, sizeof reach);
            memset(reachsum, 0, sizeof reachsum);
            calcreach(true, 9, 9);
            if (reachsum[map[9][9] - '1'] == 361)
                break;

            memset(totalsum, 0, sizeof totalsum);
            calctotal();

            reachsum[map[9][9] - '1'] = 0;
            for (best = 0, c = 0; c < 6; c++) {
                if (!reachsum[c])
                    continue;
                if (reachsum[c] == totalsum[c]) {
                    best = c;
                    break;
                } else if (reachsum[c] > reachsum[best]) {
                    best = c;
                }
            }

            apply(best + '1');
        } while (++steps);
    }

    fclose(fp);

    printf("steps: %zu\n", steps);
    return 0;
}
SteelTermite
quelle
Schön gemacht Willem, danke, dass du mich in deiner Beschreibung erwähnt hast. Ich fühle mich durch deine Gnade geehrt.
Herjan
Kein Problem, lieber Herjan
SteelTermite
Übrigens, Ihre Aussage, dass es geringfügig besser abschneidet als Herjans, ist bereits überholt. Ich habe nur die Verbesserung angewendet, von der ich gesprochen habe (in der Mail);) Viel Glück, mich jetzt zu schlagen!
Herjan
1
515 Schritte vor Ihnen, jemals davon gehört, ein '=' hinzuzufügen / zu entfernen, heheh
Herjan
In der Tat, Herjan. Ich werde meinen Beitrag entsprechend Ihrem Vorschlag aktualisieren.
SteelTermite
3

Java - 2.245.529 2.201.995 Schritte

Parallele & Caching-Baumsuche in Tiefe 5, wodurch die Anzahl der "Inseln" minimiert wird. Da die Verbesserung von Tiefe 4 auf Tiefe 5 so gering war, halte ich es nicht für sinnvoll, sie noch weiter zu verbessern. Aber wenn es verbesserungswürdig sein sollte, sollte ich nach meinem Bauchgefühl die Anzahl der Inseln als Differenz zwischen zwei Staaten berechnen, anstatt alles neu zu berechnen.

Zur Zeit wird auf stdout ausgegeben, bis ich das Eingabeformat des Verifizierers kenne.

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class FloodPaint {

    private static final ForkJoinPool FORK_JOIN_POOL = new ForkJoinPool();

    public static void main(String[] arg) throws IOException, InterruptedException, ExecutionException {
        try (BufferedReader reader = new BufferedReader(new FileReader("floodtest"))) {
            int sum = 0;
            State initState = readNextInitState(reader);
            while (initState != null) {
                List<Integer> solution = generateSolution(initState);
                System.out.println(solution);
                sum += solution.size();
                initState = readNextInitState(reader);
            }
            System.out.println(sum);
        }
    }

    private static State readNextInitState(BufferedReader reader) throws IOException {
        int[] initGrid = new int[State.DIM * State.DIM];
        String line = reader.readLine();
        while ((line != null) && line.isEmpty()) {
            line = reader.readLine();
        }
        if (line == null) {
            return null;
        }
        for (int rowNo = 0; rowNo < State.DIM; ++rowNo) {
            for (int colNo = 0; colNo < State.DIM; ++colNo) {
                initGrid[(State.DIM * rowNo) + colNo] = line.charAt(colNo) - '0';
            }
            line = reader.readLine();
        }
        return new State(initGrid);
    }

    private static List<Integer> generateSolution(State initState) throws InterruptedException, ExecutionException {
        List<Integer> solution = new LinkedList<>();
        StateFactory stateFactory = new StateFactory();
        State state = initState;
        while (!state.isSolved()) {
            int num = findGoodNum(state, stateFactory);
            solution.add(num);
            state = state.getNextState(num, stateFactory);
        }
        return solution;
    }

    private static int findGoodNum(State state, StateFactory stateFactory) throws InterruptedException, ExecutionException {
        SolverTask task = new SolverTask(state, stateFactory);
        FORK_JOIN_POOL.invoke(task);
        return task.get();
    }

}

class SolverTask extends RecursiveTask<Integer> {

    private static final int DEPTH = 5;

    private final State state;
    private final StateFactory stateFactory;

    SolverTask(State state, StateFactory stateFactory) {
        this.state = state;
        this.stateFactory = stateFactory;
    }

    @Override
    protected Integer compute() {
        try {
            Map<Integer,AnalyzerTask> tasks = new HashMap<>();
            for (int num = 1; num <= 6; ++num) {
                if (num != state.getCenterNum()) {
                    State nextState = state.getNextState(num, stateFactory);
                    AnalyzerTask task = new AnalyzerTask(nextState, DEPTH - 1, stateFactory);
                    tasks.put(num, task);
                }
            }
            invokeAll(tasks.values());
            int bestValue = Integer.MAX_VALUE;
            int bestNum = -1;
            for (Map.Entry<Integer,AnalyzerTask> taskEntry : tasks.entrySet()) {
                int value = taskEntry.getValue().get();
                if (value < bestValue) {
                    bestValue = value;
                    bestNum = taskEntry.getKey();
                }
            }
            return bestNum;
        } catch (InterruptedException | ExecutionException ex) {
            throw new RuntimeException(ex);
        }
    }

}

class AnalyzerTask extends RecursiveTask<Integer> {

    private static final int DEPTH_THRESHOLD = 3;

    private final State state;
    private final int depth;
    private final StateFactory stateFactory;

    AnalyzerTask(State state, int depth, StateFactory stateFactory) {
        this.state = state;
        this.depth = depth;
        this.stateFactory = stateFactory;
    }

    @Override
    protected Integer compute() {
        return (depth < DEPTH_THRESHOLD) ? analyze() : split();
    }

    private int analyze() {
        return analyze(state, depth);
    }

    private int analyze(State state, int depth) {
        if (state.isSolved()) {
            return -depth;
        }
        if (depth == 0) {
            return state.getNumIslands();
        }
        int bestValue = Integer.MAX_VALUE;
        for (int num = 1; num <= 6; ++num) {
            if (num != state.getCenterNum()) {
                State nextState = state.getNextState(num, stateFactory);
                int nextValue = analyze(nextState, depth - 1);
                bestValue = Math.min(bestValue, nextValue);
            }
        }
        return bestValue;
    }

    private int split() {
        try {
            if (state.isSolved()) {
                return -depth;
            }
            Collection<AnalyzerTask> tasks = new ArrayList<>(5);
            for (int num = 1; num <= 6; ++num) {
                State nextState = state.getNextState(num, stateFactory);
                AnalyzerTask task = new AnalyzerTask(nextState, depth - 1, stateFactory);
                tasks.add(task);
            }
            invokeAll(tasks);
            int bestValue = Integer.MAX_VALUE;
            for (AnalyzerTask task : tasks) {
                int nextValue = task.get();
                bestValue = Math.min(bestValue, nextValue);
            }
            return bestValue;
        } catch (InterruptedException | ExecutionException ex) {
            throw new RuntimeException(ex);
        }
    }

}

class StateFactory {

    private static final int INIT_CAPACITY = 40000;
    private static final float LOAD_FACTOR = 0.9f;

    private final ReadWriteLock cacheLock = new ReentrantReadWriteLock();
    private final Map<List<Integer>,State> cache = new HashMap<>(INIT_CAPACITY, LOAD_FACTOR);

    State get(int[] grid) {
        List<Integer> stateKey = new IntList(grid);
        State state;
        cacheLock.readLock().lock();
        try {
            state = cache.get(stateKey);
        } finally {
            cacheLock.readLock().unlock();
        }
        if (state == null) {
            cacheLock.writeLock().lock();
            try {
                state = cache.get(stateKey);
                if (state == null) {
                    state = new State(grid);
                    cache.put(stateKey, state);
                }
            } finally {
                cacheLock.writeLock().unlock();
            }
        }
        return state;
    }

}

class State {

    static final int DIM = 19;
    private static final int CENTER_INDEX = ((DIM * DIM) - 1) / 2;

    private final int[] grid;
    private int numIslands;

    State(int[] grid) {
        this.grid = grid;
        numIslands = calcNumIslands(grid);
    }

    private static int calcNumIslands(int[] grid) {
        int numIslands = 0;
        BitSet uncounted = new BitSet(DIM * DIM);
        uncounted.set(0, DIM * DIM);
        int index = -1;
        while (!uncounted.isEmpty()) {
            index = uncounted.nextSetBit(index + 1);
            BitSet island = new BitSet(DIM * DIM);
            generateIsland(grid, index, grid[index], island);
            ++numIslands;
            uncounted.andNot(island);
        }
        return numIslands;
    }

    private static void generateIsland(int[] grid, int index, int num, BitSet island) {
        if ((grid[index] == num) && !island.get(index)) {
            island.set(index);
            if ((index % DIM) > 0) {
                generateIsland(grid, index - 1, num, island);
            }
            if ((index % DIM) < (DIM - 1)) {
                generateIsland(grid, index + 1, num, island);
            }
            if ((index / DIM) > 0) {
                generateIsland(grid, index - DIM, num, island);
            }
            if ((index / DIM) < (DIM - 1)) {
                generateIsland(grid, index + DIM, num, island);
            }
        }
    }

    int getCenterNum() {
        return grid[CENTER_INDEX];
    }

    boolean isSolved() {
        return numIslands == 1;
    }

    int getNumIslands() {
        return numIslands;
    }

    State getNextState(int num, StateFactory stateFactory) {
        int[] nextGrid = grid.clone();
        if (num != getCenterNum()) {
            flood(nextGrid, CENTER_INDEX, getCenterNum(), num);
        }
        State nextState = stateFactory.get(nextGrid);
        return nextState;
    }

    private static void flood(int[] grid, int index, int fromNum, int toNum) {
        if (grid[index] == fromNum) {
            grid[index] = toNum;
            if ((index % 19) > 0) {
                flood(grid, index - 1, fromNum, toNum);
            }
            if ((index % 19) < (DIM - 1)) {
                flood(grid, index + 1, fromNum, toNum);
            }
            if ((index / 19) > 0) {
                flood(grid, index - DIM, fromNum, toNum);
            }
            if ((index / 19) < (DIM - 1)) {
                flood(grid, index + DIM, fromNum, toNum);
            }
        }
    }

}

class IntList extends AbstractList<Integer> implements List<Integer> {

    private final int[] arr;
    private int hashCode = -1;

    IntList(int[] arr) {
        this.arr = arr;
    }

    @Override
    public int size() {
        return arr.length;
    }

    @Override
    public Integer get(int index) {
        return arr[index];
    }

    @Override
    public Integer set(int index, Integer value) {
        int oldValue = arr[index];
        arr[index] = value;
        return oldValue;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj) {
            return true;
        }
        if (obj instanceof IntList) {
            IntList arg = (IntList) obj;
            return Arrays.equals(arr, arg.arr);
        }
        return super.equals(obj);
    }

    @Override
    public int hashCode() {
        if (hashCode == -1) {
            hashCode = 1;
            for (int elem : arr) {
                hashCode = 31 * hashCode + elem;
            }
        }
        return hashCode;
    }

}
MrBackend
quelle
Beeindruckend, können Sie die Schritte in eine Datei schreiben? Damit wir es überprüfen können?
Herjan
@Herjan es scheint, sein Code ist selbstvalidierend. See isSolved ()
BurntPizza
@BurntPizza Also? Mein Code ist auch selbstvalidierend, lol ... Ich meine, das kann genauso falsch sein wie mein eigener Code.
Herjan
isSolved () dient nicht zur Validierung, sondern zum Beenden. Was das Schreiben betrifft - wird es in der nächsten Version tun.
MrBackend
Es würde mich interessieren, ob eine Heuristik, bei der 5 Schritte tief gesucht wurden, nur dann funktioniert, wenn die Anzahl der gefundenen Schritte für 4 größer ist als 24die, die zu einer wesentlich effizienteren Laufzeit führen würde.
Joe Z.
2

Mein letzter Eintrag: C - 2.384.020 Schritte

Diesmal ein Check-All-Moglichkeiten-Test ... Dieses Ergebnis wird mit einer Tiefe von 3 erzielt. Eine Tiefe von 5 sollte ~ 2,1M Schritte ergeben ... ZU LANGSAM. Die Tiefe 20+ gibt die geringstmögliche Anzahl von Schritten an (sie überprüft nur alle Übereinstimmungen und die kürzesten Gewinne) ... Sie hat die geringste Anzahl von Schritten, obwohl ich es hasse, da sie nur ein kleines bisschen besser ist, aber die Leistung ist mies. Ich bevorzuge meinen anderen C-Eintrag, der sich ebenfalls in diesem Beitrag befindet.

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

char map[19][19], reach[19][19];
int reachsum[6], totalsum[6], mapCount = 0;
FILE *stepfile;

bool loadmap(FILE *fp)
{
    fprintf(stepfile, "%s", "\n");

    mapCount++;

    char buf[19 + 2];
    size_t row = 0;

    while (fgets(buf, sizeof buf, fp) && row < 19) {
        if (strlen(buf) != 20)
            break;
        memcpy(map[row++], buf, 19);
    }
    return row == 19;
}

void calcreach(bool first, size_t row, size_t col);
void check(char c, bool first, size_t row, size_t col)
{
    if (map[row][col] == c)
        calcreach(first, row, col);
    else if (first)
        calcreach(false, row, col);
}

void calcreach(bool first, size_t row, size_t col)
{
    char c = map[row][col];

    reach[row][col] = c;
    reachsum[c - '1']++;
    if (row < 18 && !reach[row + 1][col])
        check(c, first, row + 1, col);
    if (col < 18 && !reach[row][col + 1])
        check(c, first, row, col + 1);
    if (row > 0 && !reach[row - 1][col])
        check(c, first, row - 1, col);
    if (col > 0 && !reach[row][col - 1])
        check(c, first, row, col - 1);
}

void calctotal()
{
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            totalsum[map[row][col] - '1']++;
}

void apply(char c)
{
    char d = map[9][9];
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            if (reach[row][col] == d)
                map[row][col] = c;
}

int pown(int x, int y){
    int p = 1;
    for(int i = 0; i < y; i++){
        p = p * x;
    }

    return p;
}

int main()
{
    size_t steps = 0;
    FILE *fp;

    if (!(fp = fopen("floodtest", "r")))
        return 1;
    if(!(stepfile = fopen("steps.txt", "w")))
        return 1;

    const int depth = 5;
    char possibilities[pown(6, depth)][depth];
    int t = 0;
    for(int a = 0; a < 6; a++){
        for(int b = 0; b < 6; b++){
            for(int c = 0; c < 6; c++){
                for(int d = 0; d < 6; d++){
                    for(int e = 0; e < 6; e++){
                        possibilities[t][0] = (char)(a + '1');
                        possibilities[t][1] = (char)(b + '1');
                        possibilities[t][2] = (char)(c + '1');
                        possibilities[t][3] = (char)(d + '1');
                        possibilities[t++][4] = (char)(e + '1');
                    }
                }
            }
        }
    }
    poes:
    while (loadmap(fp)) {
        do {
            char map2[19][19];
            memcpy(map2, map, sizeof(map));

            memset(reach, 0, sizeof reach);
            memset(reachsum, 0, sizeof reachsum);
            calcreach(true, 9, 9);

            int best = 0, index = 0, end = depth;
            for(int i = 0; i < pown(6, depth); i++){
                for(int d = 0; d < end; d++){

                    apply(possibilities[i][d]);

                    memset(reach, 0, sizeof reach);
                    memset(reachsum, 0, sizeof reachsum);
                    calcreach(true, 9, 9);

                    if(reachsum[map[9][9] - '1'] == 361 && d < end){
                        end = d+1;
                        index = i;
                        break;
                    }
                }
                if(end == depth && best < reachsum[map[9][9] - '1']){
                    best = reachsum[map[9][9] - '1'];
                    index = i;
                }

                memcpy(map, map2, sizeof(map2));
                memset(reach, 0, sizeof reach);
                memset(reachsum, 0, sizeof reachsum);
                calcreach(true, 9, 9);
            }

            for(int d = 0; d < end; d++){

                apply(possibilities[index][d]);

                memset(reach, 0, sizeof reach);
                memset(reachsum, 0, sizeof reachsum);
                calcreach(true, 9, 9);

                fprintf(stepfile, "%c", possibilities[index][d]);
                steps++;
            }
            if(reachsum[map[9][9] - '1'] == 361)
                goto poes;
        } while (1);
    }

    fclose(fp);
    fclose(stepfile);

    printf("steps: %zu\n", steps);
    return 0;
}

Eine weitere verbesserte KI in C - 2.445.761 Schritten

Basierend auf SteelTermite's:

#include <stdio.h>
#include <string.h>
#include <stdbool.h>

char map[19][19], reach[19][19];
int reachsum[6], totalsum[6], mapCount = 0;
FILE *stepfile;

bool loadmap(FILE *fp)
{
    fprintf(stepfile, "%s", "\n");

    if(mapCount % 1000 == 0)
        printf("mapCount = %d\n", mapCount);

    mapCount++;

    char buf[19 + 2];
    size_t row = 0;

    while (fgets(buf, sizeof buf, fp) && row < 19) {
        if (strlen(buf) != 20)
            break;
        memcpy(map[row++], buf, 19);
    }
    return row == 19;
}

void calcreach(bool first, size_t row, size_t col);
void check(char c, bool first, size_t row, size_t col)
{
    if (map[row][col] == c)
        calcreach(first, row, col);
    else if (first)
        calcreach(false, row, col);
}

void calcreach(bool first, size_t row, size_t col)
{
    char c = map[row][col];

    reach[row][col] = c;
    reachsum[c - '1']++;
    if (row < 18 && !reach[row + 1][col])
        check(c, first, row + 1, col);
    if (col < 18 && !reach[row][col + 1])
        check(c, first, row, col + 1);
    if (row > 0 && !reach[row - 1][col])
        check(c, first, row - 1, col);
    if (col > 0 && !reach[row][col - 1])
        check(c, first, row, col - 1);
}

void calctotal()
{
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            totalsum[map[row][col] - '1']++;
}

void apply(char c)
{
    char d = map[9][9];
    size_t row, col;

    for (row = 0; row < 19; row++)
        for (col = 0; col < 19; col++)
            if (reach[row][col] == d)
                map[row][col] = c;
}

int main()
{
    char c, best, answer;
    size_t steps = 0;
    FILE *fp;

    if (!(fp = fopen("floodtest", "r")))
        return 1;
    if(!(stepfile = fopen("steps.txt", "w")))
            return 1;

    while (loadmap(fp)) {
        do {
            memset(reach, 0, sizeof reach);
            memset(reachsum, 0, sizeof reachsum);
            calcreach(true, 9, 9);
            if (reachsum[map[9][9] - '1'] == 361)
                break;

            memset(totalsum, 0, sizeof totalsum);
            calctotal();

            reachsum[map[9][9] - '1'] = 0;
            for (best = 0, c = 0; c < 6; c++) {
                if (!reachsum[c])
                    continue;
                if (reachsum[c] == totalsum[c]) {
                    best = c;
                    goto outLoop;
                } else if (reachsum[c] > reachsum[best]) {
                    best = c;
                }
            }

            char map2[19][19];
            memcpy(map2, map, sizeof(map));

            int temp = best;
            for(c = 0; c < 6; c++){

                if(c != best){

                    apply(c + '1');

                    memset(reach, 0, sizeof reach);
                    memset(reachsum, 0, sizeof reachsum);
                    calcreach(true, 9, 9);
                    if (reachsum[best] == totalsum[best]) {

                        memcpy(map, map2, sizeof(map2));
                        memset(reach, 0, sizeof reach);
                        memset(reachsum, 0, sizeof reachsum);
                        calcreach(true, 9, 9);

                        if(temp == -1)
                            temp = c;
                        else if(reachsum[c] > reachsum[temp])
                            temp = c;
                    }

                    memcpy(map, map2, sizeof(map2));
                    memset(reach, 0, sizeof reach);
                    memset(reachsum, 0, sizeof reachsum);
                    calcreach(true, 9, 9);
                }
            }

outLoop:    answer = (char)(temp + '1');
            fprintf(stepfile, "%c", answer);
            apply(answer);
        } while (++steps);
    }

    fclose(fp);
    fclose(stepfile);

    printf("steps: %zu\n", steps);
    return 0;
}
Herjan
quelle
... und ~ 200K, um meine zu schlagen;)
MrBackend
Sie sollten jeden Eintrag als individuelle Antwort posten.
Joe Z.
@JoeZ. Tut mir leid, aber es fühlte sich nach Spamming an, also habe ich beschlossen, sie in einer Antwort zusammenzufassen (es ist egal, da nur die beste (die beste = die KI mit der geringsten Anzahl von Schritten) zählt). Zumindest dachte ich das.
Herjan
1

Java - 2.610.797 4.780.841 Schritte

(Fill-Bug behoben, Score ist jetzt dramatisch schlechter -_-)

Dies ist meine grundlegende Vorlage für einen Referenzalgorithmus. Er erstellt einfach ein Histogramm der Quadrate an den Rändern des gemalten Bereichs und malt mit der am häufigsten verwendeten Farbe. Läuft die 100k in ein paar Minuten.

Offensichtlich wird nicht gewinnen, aber es ist sicherlich nicht zuletzt. Ich werde wahrscheinlich eine weitere Vorlage für clevere Sachen machen. Fühlen Sie sich frei, diesen Algorithmus als Ausgangspunkt zu verwenden.

Deaktivieren Sie die kommentierten Zeilen für die vollständige Ausgabe. Standardmäßig wird die Anzahl der durchgeführten Schritte gedruckt.

import java.io.*;
import java.util.*;

public class PainterAI {

    public static void main(String[] args) throws IOException {

        int totalSteps = 0, numSolved = 0;

        char[] board = new char[361];
        Scanner s = new Scanner(new File("floodtest"));
        long startTime = System.nanoTime();
        caseloop: while (s.hasNextLine()) {
            for (int l = 0; l < 19; l++) {
                String line = s.nextLine();
                if (line.isEmpty())
                    continue caseloop;
                System.arraycopy(line.toCharArray(), 0, board, l * 19, 19);
            }

            List<Character> colorsUsed = new ArrayList<>();
            Stack<Integer> nodes = new Stack<>();

            for (;; totalSteps++) {
                char p = board[180];
                int[] occurrences = new int[7];
                nodes.add(180);
                int numToPaint = 0;
                while (!nodes.empty()) {
                    int n = nodes.pop();
                    if (n < 0 || n > 360)
                        continue;
                    if (board[n] == p) {
                        board[n] = 48;
                        numToPaint++;
                        if (n % 19 > 0)
                            nodes.push(n - 1);
                        if(n%19<18)
                            nodes.push(n + 1);
                        if(n/19>0)
                            nodes.push(n - 19);
                        if(n/19<18)
                            nodes.push(n + 19);
                    } else
                        occurrences[board[n] - 48]++;
                }
                if (numToPaint == 361)
                    break;
                char mostFrequent = 0;
                int times = -1;
                for (int i = 1; i < 7; i++)
                    if (occurrences[i] > times) {
                        times = occurrences[i];
                        mostFrequent = (char) (i + 48);
                    }
                for (int i = 0; i < 361; i++)
                    if (board[i] == 48)
                        board[i] = mostFrequent;
                //colorsUsed.add(mostFrequent);
            }
            numSolved++;

            /*String out = "";
            for (Character c : colorsUsed)
                out += c;
            System.out.println(out); //print output*/
        }
        s.close();
        System.out.println("Total steps to solve all cases: " + totalSteps);
        System.out.printf("\nSolved %d test cases in %.2f seconds", numSolved, (System.nanoTime() - startTime) / 1000000000.);
    }
}

Golf auf 860 Zeichen (ohne die Zeilenumbrüche für die Formatierung), aber könnte mehr geschrumpft werden, wenn ich Lust hätte, es zu versuchen:

import java.io.*;import java.util.*;class P{
public static void main(String[]a)throws Exception{int t=0;char[]b=new char[361];
Scanner s=new Scanner(new File("floodtest"));c:while(s.hasNextLine()){
for(int l=0;l<19;l++){String L=s.nextLine();if(L.isEmpty())continue c;
System.arraycopy(L.toCharArray(),0,b,l*19,19);}List<Character>u=new ArrayList<>();
Stack<Integer>q=new Stack<>();for(int[]o=new int[7];;t++){char p=b[180];q.add(180);
int m=0;while(!q.empty()){int n=q.pop();if(n<0|n>360)continue;if(b[n]==p){b[n]=48;m++;
if(n%19>0)q.add(n-1);if(n%19<18)q.add(n+1);if(n/19>0)q.add(n-19);if(n/19<18)
q.add(n+19);}else o[b[n]-48]++;}if(m==361)break;
char f=0;int h=0;for(int i=1;i<7;i++)if(o[i]>h){h=o[i];f=(char)(i+48);}
for(int i=0;i<361;i++)if(b[i]==48)b[i]=f;u.add(f);}String y="";for(char c:u)y+=c;
System.out.println(y);}s.close();System.out.println("Steps: "+t);}}
Gebrannte Pizza
quelle
Der einzige Grund, warum es "sicherlich nicht zuletzt" ist, ist, dass meine Referenzlösung da ist, um Dinge aufzupolstern. Es ist im Moment der letzte Platz unter allen Einsendungen anderer Leute: P
Joe Z.
@JoeZ. Nun, es war vor SteelTermite's, aber er hat seine verbessert. Ich meinte dies als den "nächsten logischen Schritt von naiven" Ansatz. Ich wäre besorgt, wenn es gut
laufen
1

Haskell - 2.475.056 Schritte

Der Algorithmus ähnelt dem von MrBackend in den Kommentaren vorgeschlagenen. Der Unterschied ist: Sein Vorschlag findet den billigsten Weg zum höchsten Kostenquadrat, mein Vorschlag verringert gierig die Graphenexzentrizität bei jedem Schritt.

import Data.Array
import qualified Data.Map as M
import Data.Word
import Data.List
import Data.Maybe
import Data.Function (on)
import Data.Monoid
import Control.Arrow
import Control.Monad (liftM)
import System.IO
import System.Environment
import Control.Parallel.Strategies
import Control.DeepSeq

type Grid v = Array (Word8,Word8) v

main = do
  (ifn:_) <- getArgs
  hr <- openFile ifn ReadMode
  sp <- liftM parseFile $ hGetContents hr
  let (len,sol) = turns (map solve sp `using` parBuffer 3 (evalList rseq))
  putStrLn $ intercalate "\n" $ map (concatMap show) sol
  putStrLn $ "\n\nTotal turns: " ++ (show len)

turns :: [[a]] -> (Integer,[[a]])
turns l = rl' 0 l where
  rl' c [] = (c,[])
  rl' c (k:r) = let
   s = c + genericLength k
   (s',l') = s `seq` rl' s r
   in (s',k:l')

centrepoint :: Grid v -> (Word8,Word8)
centrepoint g = let
  ((x0,y0),(x1,y1)) = bounds g
  med l h = let t = l + h in t `div` 2 + t `mod` 2
  in (med x0 x1, med y0 y1)

neighbours :: Grid v -> (Word8,Word8) -> [(Word8,Word8)]
neighbours g (x,y) = filter
  (inRange $ bounds g)
  [(x,y+1),(x+1,y),(x,y-1),(x-1,y)]

areas :: Eq v => Grid v -> [[(Word8,Word8)]]
areas g = p $ indices g where
  p [] = []
  p (a:r) = f : p (r \\ f) where
    f = s g [a] []
s g [] _ = []
s g (h:o) v = let
  n = filter (((==) `on` (g !)) h) $ neighbours g h
  in h : s g ((n \\ (o ++ v)) ++ o) (h : v)

applyFill :: Eq v => v -> Grid v -> Grid v
applyFill c g = g // (zip fa $ repeat c) where
  fa = s g [centrepoint g] []

solve g = solve' gr' where
  aa = areas g
  cp = centrepoint g
  ca = head $ head $ filter (elem cp) aa
  gr' = M.fromList $ map (
    \r1 -> (head r1, map head $ filter (
      \r2 -> head r1 /= head r2 &&
        (not $ null $ intersect (concatMap (neighbours g) r1) r2)
     ) aa
    )
   ) aa
  solve' gr
    | null $ tail $ M.keys $ gr = []
    | otherwise = best : solve' ngr where
      djk _ [] = []
      djk v ((n,q):o) = (n,q) : djk (q:v) (
        o ++ zip (repeat (n+1))
        ((gr M.! q) \\ (v ++ map snd o))
       )
      dout = djk [] [(0,ca)]
      din = let
        m = maximum $ map fst dout
        s = filter ((== m) . fst) dout
        in djk [] s
      rc = filter (flip elem (gr M.! ca) . snd) din
      frc = let
        m = minimum $ map fst rc
        in map snd $ filter ((==m) . fst) rc
      msq = concat $ filter (flip elem frc . head) aa
      clr = map (length &&& head) $ group $ sort $ map (g !) msq
      best = snd $ maximumBy (compare `on` fst) clr
      ngr = let
        ssm = filter ((== best) . (g !)) $ map snd rc
        sml = (concatMap (gr M.!) ssm)
        ncl = ((gr M.! ca) ++ sml) \\ (ca : ssm)
        brk = M.insert ca ncl $ M.filterWithKey (\k _ ->
          (not . flip elem ssm) k
         ) gr
        in M.map 
          (\l -> nub $ map (\e -> if e `elem` ssm then ca else e) l)
          brk


parseFile :: String -> [Grid Word8]
parseFile f = map mk $ filter (not . null . head) $ groupBy ((==) `on` null) $
  map (map ((read :: String -> Word8) . (:[]))) $ lines f where
    mk :: [[Word8]] -> Grid Word8
    mk m = let
      w = fromIntegral (length $ head m) - 1
      h = fromIntegral (length m) - 1
      in array ((0,0),(w,h)) [ ((x,y),v) |
        (y,l) <- zip [h,h-1..] m,
        (x,v) <- zip [0..] l
       ]

showGrid :: Grid Word8 -> String
showGrid g = intercalate "\n" l where
  l = map sl $ groupBy ((==) `on` snd) $
    sortBy ((flip (compare `on` snd)) <> (compare `on` fst)) $
    indices g
  sl = intercalate " " . map (show . (g !))

testsolve = do
  hr <- openFile "floodtest" ReadMode
  sp <- liftM (head . parseFile) $ hGetContents hr
  let
   sol = solve sp
   a = snd $ mapAccumL (\g s -> let g' = applyFill s g in (g',g')) sp sol
  sequence_ $ map (\g -> putStrLn (showGrid g) >> putStrLn "\n") a
Jeremy List
quelle
Ist es schon zu Ende gelaufen?
Joe Z.
Noch nicht, es wäre vielleicht schon vorbei, wenn ich es über Nacht laufen lassen würde, aber der Lüfter war laut, so dass ich den Computer in den Ruhezustand versetzte. Es läuft jetzt wieder und wird erneut überprüft, wenn ich von der Arbeit nach Hause komme.
Jeremy List
Es stürzte aufgrund eines Stapelüberlaufs ab und wurde jetzt geändert, um dies zu vermeiden.
Jeremy List
1

C # - 2.383.569

Es ist eine tiefgreifende Durchquerung möglicher Lösungen, die grob den Weg der besten Verbesserung wählt (ähnlich wie Herjans C-Eintrag), mit der Ausnahme, dass ich die Reihenfolge der Generierung der Lösungskandidaten geschickt umgekehrt habe, nachdem Herjan die gleichen Zahlen veröffentlicht hatte. Die Laufzeit beträgt jedoch mehr als 12 Stunden.

class Solver
{
    static void Main()
    {
        int depth = 3;
        string text = File.ReadAllText(@"C:\TEMP\floodtest.txt");
        text = text.Replace("\n\n", ".").Replace("\n", "");
        int count = 0;
        string[] tests = text.Split(new char[] { '.' }, StringSplitOptions.RemoveEmptyEntries);
        for (int i = 0; i < tests.Length; i++)
        {
            Solver s = new Solver(tests[i]);
            string k1 = s.solve(depth);
            count += k1.Length;
            Console.WriteLine(((100 * i) / tests.Length) + " " + i + " " + k1.Length + " " + count + " " + k1);
        }
        Console.WriteLine(count);
    }

    public readonly int MAX_DIM;
    public char[] board;
    public Solver(string prob)
    {
        board = read(prob);
        MAX_DIM = (int)Math.Sqrt(board.Length);
    }

    public string solve(int d)
    {
        var sol = "";
        while (score(eval(copy(board), sol)) != board.Length)
        {
            char[] b = copy(board);
            eval(b, sol);

            var canidates = new List<string>();
            buildCanidates("", canidates, d);
            var best = canidates.Select(c => new {score = score(eval(copy(b), c)), sol = c}).ToList().OrderByDescending(t=>t.score).ThenBy(v => v.sol.Length).First();
            sol = sol + best.sol[0];
        }
        return sol;
    }

    public void buildCanidates(string b, List<string> r, int d)
    {
        if(b.Length>0)
            r.Add(b);
        if (d > 0)
        {
            r.Add(b);
            for (char i = '6'; i >= '1'; i--)
                if(b.Length == 0 || b[b.Length-1] != i)
                    buildCanidates(b + i, r, d - 1);
        }
    }

    public char[] read(string s)
    {
        return s.Where(c => c >= '0' && c <= '9').ToArray();
    }

    public void print(char[] b)
    {
        for (int i = 0; i < MAX_DIM; i++)
        {
            for(int j=0; j<MAX_DIM; j++)
                Console.Write(b[i*MAX_DIM+j]);
            Console.WriteLine();
        }
        Console.WriteLine();
    }

    public char[] copy(char[] b)
    {
        char[] n = new char[b.Length];
        for (int i = 0; i < b.Length; i++)
            n[i] = b[i];
        return n;
    }

    public char[] eval(char[] b, string sol)
    {
        foreach (char c in sol)
            eval(b, c);
        return b;
    }

    public void eval(char[] b, char c)
    {
        foreach (var l in flood(b))
            b[l] = c;
    }

    public int score(char[] b)
    {
        return flood(b).Count;
    }

    public List<int> flood(char[] b)
    {
        int start = (MAX_DIM * (MAX_DIM / 2)) + (MAX_DIM / 2);
        var check = new List<int>(MAX_DIM * MAX_DIM);
        bool[] seen = new bool[b.Length];
        var hits = new List<int>(MAX_DIM*MAX_DIM);

        check.Add(start);
        seen[start]=true;
        char target = b[start];

        int at = 0;
        while (at<check.Count)
        {
            int toCheck = check[at++];
            if (b[toCheck] == target)
            {
                addNeighbors(check, seen, toCheck);
                hits.Add(toCheck);
            }
        }
        return hits;
    }

    public void addNeighbors(List<int> check, bool[] seen, int loc)
    {
        int x = loc / MAX_DIM;
        int y = loc % MAX_DIM;
        addNeighbor(check, seen, x, y - 1);
        addNeighbor(check, seen, x, y + 1);
        addNeighbor(check, seen, x - 1, y);
        addNeighbor(check, seen, x + 1, y);
    }

    public void addNeighbor(List<int> check, bool[] seen, int x, int y)
    {
        if (x >= 0 && x < MAX_DIM && y >= 0 && y < MAX_DIM)
        {
            int l = (x * MAX_DIM) + y;
            if (!seen[l])
            {
                seen[l] = true;
                check.Add(l);
            }
        }
    }
}
CoderTao
quelle
1

Java - 2.403.189

BUILD SUCCESSFUL (total time: 220 minutes 15 seconds)

Dies sollte mein Versuch sein, eine brachiale Truppe zu gründen. Aber! Meine erste Implementierung der "besten" Wahl mit einer Tiefe ergab:

2,589,328 - BUILD SUCCESSFUL (total time: 3 minutes 11 seconds)

Der Code, der für beide verwendet wird, ist derselbe, wobei die Brute Force einen "Schnappschuss" der anderen möglichen Züge speichert und den Algorithmus über alle ausführt.


  • Probleme

Wenn Sie mit dem "Multi" -Pass-Ansatz laufen, treten zufällige Fehler auf. Ich habe die ersten 100 Rätseleinträge in einem Komponententest erstellt und kann in 100% der Fälle einen 100% -igen Erfolg erzielen, aber nicht 100% der Zeit. Um das zu kompensieren, habe ich gerade die aktuelle Puzzle-Nummer zum Zeitpunkt des Ausfalls verfolgt und einen neuen Thread gestartet, der dort aufhob, wo der letzte aufgehört hat. Jeder Thread hat die entsprechenden Ergebnisse in eine Datei geschrieben. Der Dateipool wurde dann zu einer einzelnen Datei komprimiert.

  • Ansatz

NodeStellt eine Kachel / ein Quadrat der Tafel dar und speichert einen Verweis auf alle Nachbarn. Verfolgen Sie drei Set<Node>Variablen: Remaining, Painted, Targets. Bei jeder Iteration werden Targetsalle candidateKnoten nach Wert gruppiert und target valuenach der Anzahl der "betroffenen" Knoten ausgewählt. Diese betroffenen Knoten werden dann zu Zielen für die nächste Iteration.

Die Quelle ist über viele Klassen verteilt und Ausschnitte sind außerhalb des Gesamtzusammenhangs nicht sehr aussagekräftig. Meine Quelle kann über GitHub durchsucht werden . Ich habe auch mit einer JSFiddle- Demo für die Visualisierung rumgespielt .

Trotzdem meine Arbeitspferdemethode von Solver.java:

public void flood() {

 final Data data = new Data();
 consolidateCandidates(data, targets);

 input.add(data.getTarget());

 if(input.size() > SolutionRepository.getInstance().getThreshold()){
  //System.out.println("Exceeded threshold: " + input.toString());
  cancelled = true;
 }
 paintable.addAll(data.targets());
 remaining.removeAll(data.targets());

 if(!data.targets().isEmpty()){
  targets = data.potentialTargets(data.targets(), paintable);

  data.setPaintable(paintable);
  data.setRemaining(remaining);
  data.setInput(input);

  SolutionRepository.getInstance().addSnapshot(data, input);
 }
}
Origineil
quelle
1

C # - 2.196.462 2.155.834

Dies ist im Grunde derselbe Ansatz zum Suchen nach dem besten Nachkommen wie bei meinem anderen Löser, aber mit ein paar Optimierungen, die es gerade noch erlauben, dass er mit Parallelität in etwas weniger als 10 Stunden in die Tiefe 5 geht. Während des Testens fand ich auch einen Fehler im Original, so dass der Algorithmus gelegentlich ineffiziente Routen zum Endzustand nahm (er berücksichtigte nicht die Tiefe von Zuständen mit einer Punktzahl von 64; entdeckt, während er mit Tiefenergebnissen spielte) = 7).

Der Hauptunterschied zwischen diesem und dem vorherigen Solver besteht darin, dass die Flutspielzustände im Speicher bleiben, sodass keine 6 ^ 5-Zustände regeneriert werden müssen. Aufgrund der CPU-Auslastung während des Betriebs bin ich mir ziemlich sicher, dass dies von der CPU-Begrenzung zur Speicherbandbreitenbegrenzung übergegangen ist. Viel Spaß. So viele Sünden.

Bearbeiten: Aus Gründen liefert der Algorithmus für Tiefe 5 nicht immer das beste Ergebnis. Um die Leistung zu verbessern, führen wir einfach die Schritte 5 ... und 4 ... sowie 3 und 2 und 1 aus, um herauszufinden, welcher am besten geeignet ist. Hat weitere 40k Moves abgeschabt. Da Tiefe 5 den größten Teil der Zeit ausmacht, erhöht das Hinzufügen von 4 bis 1 nur die Laufzeit von ~ 10 Stunden auf ~ 11 Stunden. Yay!

using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Collections.Generic;

public class Program
{
    static void Main()
    {
        int depth = 5;
        string text = File.ReadAllText(@"C:\TEMP\floodtest.txt");
        text = text.Replace("\n\n", ".").Replace("\n", "");
        int count = 0;
        string[] tests = text.Split(new [] { '.' }, StringSplitOptions.RemoveEmptyEntries);

        Stopwatch start = Stopwatch.StartNew();

        const int parChunk = 16*16;
        for (int i = 0; i < tests.Length; i += parChunk)
        {
            //did not know that parallel select didn't respect order
            string[] sols = tests.Skip(i).Take(parChunk).AsParallel().Select((t, idx) => new { s = new Solver2(t).solve(depth), idx}).ToList().OrderBy(v=>v.idx).Select(v=>v.s).ToArray();
            for (int j = 0; j < sols.Length; j++)
            {
                string k1 = sols[j];
                count += k1.Length;
                int k = i + j;
                int estimate = (int)((count*(long)tests.Length)/(k+1));
                Console.WriteLine(k + "\t" + start.Elapsed.TotalMinutes.ToString("F2") + "\t" + count + "\t" + estimate + "\t" + k1.Length + "\t" + k1);
            }
        }
        Console.WriteLine(count);
    }
}

public class Solver2
{
    public readonly int MAX_DIM;
    public char[] board;
    public Solver2(string prob)
    {
        board = read(prob);
        MAX_DIM = (int)Math.Sqrt(board.Length);
    }

    public string solve(int d)
    {
        string best = null;
        for (int k = d; k >= 1; k--)
        {
            string c = subSolve(k);
            if (best == null || c.Length < best.Length)
                best = c;
        }
        return best;
    }

    public string subSolve(int d)
    {
        State current = new State(copy(board), '\0', flood(board));
        var sol = "";

        while (current.score != board.Length)
        {
            State nextState = subSolve(current, d);
            sol = sol + nextState.key;
            current = nextState;
        }
        return sol;
    }

    public State subSolve(State baseState, int d)
    {
        if (d == 0)
            return baseState;
        if (!baseState.childrenGenerated)
        {
            for (int i = 0; i < baseState.children.Length; i++)
            {
                if (('1' + i) == baseState.key) continue; //no point in even eval'ing
                char[] board = copy(baseState.board);
                foreach(int idx in baseState.flood)
                    board[idx] = (char)('1' + i);
                List<int> f = flood(board);
                if (f.Count != baseState.score)
                    baseState.children[i] = new State(board, (char)('1' + i), f);
            }
            baseState.childrenGenerated = true;
        }
        State bestState = null;

        for (int i = 0; i < baseState.children.Length; i++)
            if (baseState.children[i] != null)
            {
                State bestChild = subSolve(baseState.children[i], d - 1);
                baseState.children[i].bestChildScore = bestChild.bestChildScore;
                if (bestState == null || bestState.bestChildScore < bestChild.bestChildScore)
                    bestState = baseState.children[i];
            }
        if (bestState == null || bestState.bestChildScore == baseState.score)
        {
            if (baseState.score == baseState.board.Length)
                baseState.bestChildScore = baseState.score*(d + 1);
            return baseState;
        }
        return bestState;
    }

    public char[] read(string s)
    {
        return s.Where(c => c >= '1' && c <= '6').ToArray();
    }

    public char[] copy(char[] b)
    {
        char[] n = new char[b.Length];
        for (int i = 0; i < b.Length; i++)
            n[i] = b[i];
        return n;
    }

    public List<int> flood(char[] b)
    {
        int start = (MAX_DIM * (MAX_DIM / 2)) + (MAX_DIM / 2);
        var check = new List<int>(MAX_DIM * MAX_DIM);
        bool[] seen = new bool[b.Length];
        var hits = new List<int>(MAX_DIM * MAX_DIM);

        check.Add(start);
        seen[start] = true;
        char target = b[start];

        int at = 0;
        while (at < check.Count)
        {
            int toCheck = check[at++];
            if (b[toCheck] == target)
            {
                addNeighbors(check, seen, toCheck);
                hits.Add(toCheck);
            }
        }
        return hits;
    }

    public void addNeighbors(List<int> check, bool[] seen, int loc)
    {
        //int x = loc / MAX_DIM;
        int y = loc % MAX_DIM;

        if(loc+MAX_DIM < seen.Length)
            addNeighbor(check, seen, loc+MAX_DIM);
        if(loc-MAX_DIM >= 0)
            addNeighbor(check, seen, loc-MAX_DIM);
        if(y<MAX_DIM-1)
            addNeighbor(check, seen, loc+1);
        if (y > 0)
            addNeighbor(check, seen, loc-1);
    }

    public void addNeighbor(List<int> check, bool[] seen, int l)
    {
        if (!seen[l])
        {
            seen[l] = true;
            check.Add(l);
        }
    }
}

public class State
{
    public readonly char[] board;
    public readonly char key;
    public readonly State[] children = new State[6];
    public readonly List<int> flood; 
    public readonly int score;
    public bool childrenGenerated;
    public int bestChildScore;
    public State(char[] board, char k, List<int> flood)
    {
        this.board = board;
        key = k;
        this.flood = flood;
        score = flood.Count;
        bestChildScore = score;
    }
}
CoderTao
quelle
Ich habe Ihren Code ausprobiert und er lässt sich nicht kompilieren. Bei einem Aufruf der Methode solve ist ein Fehler aufgetreten. Daneben fehlen auch einige "using" -Anweisungen. Wie auch immer, wenn Ihr Programm alles nur in 2,1 Millionen Schritten löst, herzlichen Glückwunsch, ist dies ziemlich beeindruckend.
Tigrou
@tigrou Ich hatte keine Probleme mit der Verwendung von Anweisungen. Fehler beim Auflösen des Aufrufs behoben - es war ein Artefakt, weil versucht wurde, den Code nur zu aktualisieren, anstatt ihn erneut (kopieren / einfügen). Tut mir leid.
CoderTao
blarg. Sie wollten den Namespace-Import == verwenden. Das zu reparieren.
CoderTao
Mit welcher CPU lösen Sie alle Boards in Tiefe 5 in 11 Stunden? Ich habe ein Programm unter einer I5 [email protected] ausgeführt. Es dauerte 30 Minuten, um jeden Block mit 256 Karten auszugeben. Basierend darauf würde es 8 Tage dauern, um die 100.000 Bretter zu lösen. Die CPU war während dieser Zeit zwischen 80-100% ausgelastet, alle vier Kerne waren belegt. Möglicherweise gibt es ein Problem mit der Virtualbox-Maschine, die zum Ausführen der Tests verwendet wurde, aber das ist ungefähr 16-mal langsamer als Sie (Sie sagten, es hat 11 Stunden gedauert).
Tigrou
@tigrou Ich arbeite auf einem i5 [email protected] (3-4 Jahre alte Hardware). Unter VS beträgt der Unterschied zwischen Debug- und Release-Modus 50%, aber ich bezweifle, dass dies einen 16-fachen Unterschied erklären würde. Wenn Sie unter einem Linux - Host ausführen können Sie versuchen , mit Mono - Kompilierung
CoderTao
1

Delphi XE3 2.979.145 Schritte

Ok, das ist mein Versuch. Ich bezeichne den sich ändernden Teil als Blob. In jeder Runde wird eine Kopie des Arrays erstellt und jede mögliche Farbe getestet, um festzustellen, welche Farbe den größten Blob ergibt.

Führt alle Rätsel in 3 Stunden und 6 Minuten aus

program Main;

{$APPTYPE CONSOLE}

{$R *.res}

uses
  SysUtils,
  Classes,
  Generics.Collections,
  math,
  stopwatch in 'stopwatch.pas';

type
  myArr=array[0..1]of integer;
const
  MaxSize=19;
  puzLoc='here is my file';
var
  L:TList<TList<integer>>;
  puzzles:TStringList;
  sc:TList<myArr>;
  a:array[0..MaxSize-1,0..MaxSize-1] of Integer;
  aTest:array[0..MaxSize-1,0..MaxSize-1] of Integer;
  turns,midCol,sX,sY,i:integer;
  currBlob,biggestBlob,ColorBigBlob:integer;
  sTurn:string='';
  GLC:integer=0;

procedure FillArrays;
var
  ln,x,y:integer;
  puzzle:TStringList;
begin
  sc:=TList<myArr>.Create;
  puzzle:=TStringList.Create;    
  while puzzle.Count<19 do
  begin
    if puzzles[GLC]='' then
    begin
      inc(GLC);
      continue
    end
    else
      puzzle.Add(puzzles[GLC]);
    inc(GLC)
  end;    
  for y:=0to MaxSize-1do
    for x:=0to MaxSize-1do
      a[y][x]:=Ord(puzzle[y][x+1])-48;
  puzzle.Free;
end;
function CreateArr(nx,ny:integer):myArr;
begin
  Result[1]:=nx;
  Result[0]:=ny;
end;

procedure CreateBlob;
var
  tst:myArr;
  n,tx,ty:integer;
  currColor:integer;
begin
  n:=0;
  sc.Clear;
  currColor:=a[sy][sx];
  sc.Add(CreateArr(sx,sy));
  repeat
    tx:=sc[n][1];
    ty:=sc[n][0];
    if tx>0 then
      if a[ty][tx-1]=currColor then
      begin
        tst:=CreateArr(tx-1,ty);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    if tx<MaxSize-1 then
      if a[ty][tx+1]=currColor then
      begin
        tst:=CreateArr(tx+1,ty);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    if ty>0 then
      if a[ty-1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty-1);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    if ty<MaxSize-1 then
      if a[ty+1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty+1);
        if not sc.Contains(tst)then
          sc.Add(tst);
      end;
    inc(n);
  until (n=sc.Count);
end;

function BlobSize:integer;
var
  L:TList<myArr>;
  tst:myArr;
  n,currColor,tx,ty:integer;
begin
  n:=0;
  L:=TList<myArr>.Create;
  currColor:=aTest[sy][sx];
  L.Add(CreateArr(sx,sy));

  repeat
    tx:=L[n][1];
    ty:=L[n][0];
    if tx>0then
      if aTest[ty][tx-1]=currColor then
      begin
        tst:=CreateArr(tx-1,ty);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    if tx<MaxSize-1then
      if aTest[ty][tx+1]=currColor then
      begin
        tst:=CreateArr(tx+1,ty);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    if ty>0then
      if aTest[ty-1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty-1);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    if ty<MaxSize-1then
      if aTest[ty+1][tx]=currColor then
      begin
        tst:=CreateArr(tx,ty+1);
        if not L.Contains(tst)then
          L.Add(tst);
      end;
    inc(n);
  until n=l.Count;
  Result:=L.Count;
  L.Free;
end;

function AllsameColor(c:integer):boolean;
var
  cy,cx:integer;
begin
  Result:=true;
  for cy:=0to MaxSize-1do
    for cx:=0to MaxSize-1do
      if a[cy][cx]=c then
        continue
      else
        exit(false);
end;
procedure ChangeColors(old,new:integer; testing:boolean=false);
var
  i,j:integer;
  tst:myArr;
begin
  if testing then
  begin
    for i:= 0to MaxSize-1do
      for j:= 0to MaxSize-1do
        aTest[i][j]:=a[i][j];    
    for I:=0to sc.Count-1do
    begin
      tst:=sc[i];
      aTest[tst[0]][tst[1]]:=new;
    end;
  end
  else
  begin
    for I:=0to sc.Count-1do
    begin
      tst:=sc[i];
      a[tst[0]][tst[1]]:=new;
    end;
  end;
end;
var
  sw, swTot:TStopWatch;
  solved:integer=0;
  solutions:TStringList;
  steps:integer;
  st:TDateTime;
begin          
  st:=Now;
  writeln(FormatDateTime('hh:nn:ss',st));
  solutions:=TStringList.Create;
  puzzles:=TStringList.Create;
  puzzles.LoadFromFile(puzLoc);
  swTot:=TStopWatch.Create(true);
  turns:=0;
  repeat
    sTurn:='';    
    FillArrays;
    sX:=Round(Sqrt(MaxSize))+1;
    sY:=sX;    
    repeat
      biggestBlob:=0;
      ColorBigBlob:=0;
      midCol:=a[sy][sx];
      CreateBlob;
      for I:=1to 6do
      begin
        if I=midCol then continue;    
        ChangeColors(midCol,I,true);
        currBlob:=BlobSize;
        if currBlob>biggestBlob then
        begin
          biggestBlob:=currBlob;
          ColorBigBlob:=i;
        end;
      end;
      ChangeColors(midCol,ColorBigBlob);
      inc(turns);
      if sTurn='' then
        sTurn:=IntToStr(ColorBigBlob)
      else
        sTurn:=sTurn+', '+IntToStr(ColorBigBlob);
    until AllsameColor(a[sy][sx]);
    solutions.Add(sTurn);
    inc(solved);
    if solved mod 100=0then
      writeln(Format('Solved %d puzzles || %s',[solved,FormatDateTime('hh:nn:ss',Now-st)]));    
  until GLC>=puzzles.Count-1;    
  swTot.Stop;
  WriteLn(Format('solving these puzzles took %d',[swTot.Elapsed]));
  writeln(Format('Total moves: %d',[turns]));
  solutions.SaveToFile('save solutions here');
  readln;
end.

Denken Sie auch an eine Bruteforce-Backtracing-Methode.
Vielleicht macht es Spaß für dieses Wochenende ^^

Teun Pronk
quelle
0

Javascript / node.js - 2.588.847

Algoritm unterscheidet sich etwas von den meisten hier, da vorberechnete Regionen und Differenzen zwischen den Berechnungen verwendet werden. Es läuft unter 10 Minuten hier, wenn Sie wegen Javascript über die Geschwindigkeit besorgt sind.

var fs = require('fs')


var file = fs.readFileSync('floodtest','utf8');
var boards = file.split('\n\n');
var linelength  = boards[0].split('\n')[0].length;
var maxdim = linelength* linelength;


var board = function(info){
    this.info =[];
    this.sameNeighbors = [];
    this.differentNeighbors = [];
    this.samedifferentNeighbors = [];
    for (var i = 0;i <info.length;i++ ){
        this.info.push(info[i]|0);
    };

    this.getSameAndDifferentNeighbors();
}

board.prototype.getSameAndDifferentNeighbors = function(){
    var self = this;
    var info = self.info;
    function getSameNeighbors(i,value,sameneighbors,diffneighbors){

        var neighbors = self.getNeighbors(i);
        for(var j =0,nl = neighbors.length; j< nl;j++){
            var index = neighbors[j];
            if (info[index]  === value ){
                if( sameneighbors.indexOf(index) === -1){
                    sameneighbors.push(index);
                    getSameNeighbors(index,value,sameneighbors,diffneighbors);
                }
            }else if( diffneighbors.indexOf(index) === -1){
                    diffneighbors.push(index);
            }
        } 

    }


    var sneighbors = [];
    var dneighbors = [];
    var sdneighbors = [];

    for(var i= 0,l= maxdim;i<l;i++){
        if (sneighbors[i] === undefined){
            var sameneighbors = [i];
            var diffneighbors = [];
            getSameNeighbors(i,info[i],sameneighbors,diffneighbors);
            for (var j = 0; j<sameneighbors.length;j++){
                var k = sameneighbors[j];
                sneighbors[k] = sameneighbors;
                dneighbors[k] = diffneighbors;
            } 
        }

    }

    for(var i= 0,l= maxdim;i<l;i++){
        if (sdneighbors[i] === undefined){
            var value = [];
            var dni = dneighbors[i];
            for (var j = 0,dnil = dni.length; j<dnil;j++){
                var dnij = dni[j];
                var sdnij = sneighbors[dnij];
                for(var k = 0,sdnijl = sdnij.length;k<sdnijl;k++){
                    if (value.indexOf(sdnij[k])=== -1){
                        value.push(sdnij[k]);
                    }
                }
            };
            var sni = sneighbors[i];
            for (var j=0,snil = sni.length;j<snil;j++){
                sdneighbors[sni[j]] = value;
            };
        };
    }
    this.sameNeighbors = sneighbors;
    this.differentNeighbors =  dneighbors;
    this.samedifferentNeighbors =sdneighbors;

}

board.prototype.getNeighbors = function(i){
        var returnValue = [];

        var index = i-linelength;
        if (index >= 0){
            returnValue.push(index);
        }

        index = i+linelength;
        if (index < maxdim){

            returnValue.push(index);
        }

        index = i-1;

        if (index >= 0 && index/linelength >>> 0 === i/linelength  >>> 0){
            returnValue.push(index);
        }
        index = i+1;
        if (index/linelength >>> 0 === i/linelength >>> 0){
            returnValue.push(index);
        }

        if (returnValue.indexOf(-1) !== -1){
            console.log(i,parseInt(index/linelength,10),parseInt(i/linelength,10));
        } 
        return returnValue 
}

board.prototype.solve = function(){
    var i,j;
    var info = this.info;
    var sameNeighbors = this.sameNeighbors;
    var samedifferentNeighbors = this.samedifferentNeighbors;
    var middle = 9*19+9;
    var maxValues = [];

    var done = {};
    for (i=0; i<sameNeighbors[middle].length;i++){
        done[sameNeighbors[middle][i]] = true;
    }
    var usefullNeighbors = [[],[],[],[],[],[],[]];
    var diff = [];
    var count = [0];

    count[1] = 0;
    count[2] = 0;
    count[3] = 0;
    count[4] = 0;
    count[5] = 0;
    count[6] = 0;

    var addusefullNeighbors = function(index,diff){

        var indexsamedifferentNeighbors =samedifferentNeighbors[index];
        for (var i=0;i < indexsamedifferentNeighbors.length;i++){
            var is = indexsamedifferentNeighbors[i];
            var value = info[is];
            if (done[is] === undefined && usefullNeighbors[value].indexOf(is) === -1){
                usefullNeighbors[value].push(is);
                diff.push(value);
            }

        }
    }
    addusefullNeighbors(middle,diff);


    while(  usefullNeighbors[1].length > 0 || usefullNeighbors[2].length > 0 ||
            usefullNeighbors[3].length > 0 || usefullNeighbors[4].length > 0 ||
            usefullNeighbors[5].length > 0 || usefullNeighbors[6].length > 0 ){
        for (i=0;i < diff.length;i++){ 
            count[diff[i]]++;
        };
        var maxValue = count.indexOf(Math.max.apply(null, count));
        diff.length = 0;
        var used = usefullNeighbors[maxValue];
        for (var i=0,ul = used.length;i < ul;i++){
            var index = used[i];
            if (info[index] === maxValue){
                done[index] = true;
                addusefullNeighbors(index,diff);
            }
        }
        used.length = 0;
        count[maxValue] = 0;


        maxValues.push(maxValue);
    }
    return maxValues.join("");
};
var solved = [];
var start = Date.now();
for (var boardindex =0;boardindex < boards.length;boardindex++){ 
    var b = boards[boardindex].replace(/\n/g,'').split('');
    var board2 = new board(b);
    solved.push(board2.solve());
};
var diff = Date.now()-start;
console.log(diff,boards.length);
console.log(solved.join('').length);
console.log("end");

fs.writeFileSync('solution.txt',solved.join('\n'),'utf8');
Gero3
quelle
-3

C-Code, der durch einfache Gewaltanwendung garantiert eine optimale Lösung findet. Funktioniert für Raster beliebiger Größe und alle Eingaben. Das Ausführen auf den meisten Gittern dauert sehr, sehr lange.

Die Flutfüllung ist äußerst ineffizient und beruht auf Rekursion. Möglicherweise müssen Sie Ihren Stapel vergrößern, wenn er sehr klein ist. Das Brute-Force-System verwendet eine Zeichenfolge zum Speichern der Zahlen und einfaches Add-with-Carry, um alle möglichen Optionen durchzugehen. Dies ist auch äußerst ineffizient, da es die meisten Schritte milliardenfach wiederholt.

Leider konnte ich es nicht mit allen Testfällen testen, da ich im Alter sterbe, bevor es zu Ende ist.

#include <stdio.h>
#include <string.h>


#define GRID_SIZE       19

char grid[GRID_SIZE][GRID_SIZE] = { {3,3,5,4,1,3,4,1,5,3,3,5,4,1,3,4,1,5},
                                    {5,1,3,4,1,1,5,2,1,3,3,5,4,1,3,4,1,5},
                                    {6,5,2,3,4,3,3,4,3,3,3,5,4,1,3,4,1,5},
                                    {4,4,4,5,5,5,4,1,4,3,3,5,4,1,3,4,1,5},
                                    {6,2,5,3,3,1,1,6,6,3,3,5,4,1,3,4,1,5},
                                    {5,5,1,2,5,2,6,6,3,3,3,5,4,1,3,4,1,5},
                                    {6,1,1,5,3,6,2,3,6,3,3,5,4,1,3,4,1,5},
                                    {1,2,2,4,5,3,5,1,2,3,3,5,4,1,3,4,1,5},
                                    {3,6,6,1,5,1,3,2,4,3,3,5,4,1,3,4,1,5} };
char grid_save[GRID_SIZE][GRID_SIZE];

char test_grids[6][GRID_SIZE][GRID_SIZE];

void flood_fill(char x, char y, char old_colour, char new_colour)
{
    if (grid[y][x] == new_colour)
        return;

    grid[y][x] = new_colour;

    if (y > 0)
    {
        if (grid[y-1][x] == old_colour)
            flood_fill(x, y-1, old_colour, new_colour);
    }
    if (y < GRID_SIZE - 1)
    {
        if (grid[y+1][x] == old_colour)
            flood_fill(x, y+1, old_colour, new_colour);
    }

    if (x > 0)
    {
        if (grid[y][x-1] == old_colour)
            flood_fill(x-1, y, old_colour, new_colour);
    }
    if (x < GRID_SIZE - 1)
    {
        if (grid[y][x+1] == old_colour)
            flood_fill(x+1, y, old_colour, new_colour);
    }
}

bool check_grid(void)
{
    for (char i = 0; i < 6; i++)
    {
        if (!memcmp(grid, &test_grids[i][0][0], sizeof(grid)))
            return(true);
    }

    return(false);
}

void inc_string_num(char *s)
{
    char *c;

    c = s + strlen(s) - 1;
    *c += 1;

    // carry
    while (*c > '6')
    {
        *c = '1';
        if (c == s) // first char
        {
            strcat(s, "1");
            return;
        }
        c--;
        *c += 1;
    }
}

void print_grid(void)
{
    char x, y;
    for (y = 0; y < GRID_SIZE; y++)
    {
        for (x = 0; x < GRID_SIZE; x++)
            printf("%d ", grid[y][x]);
        printf("\n");
    }
    printf("\n");
}

int main(int argc, char* argv[])
{
    // create test grids for comparisons
    for (char i = 0; i < 6; i++)
        memset(&test_grids[i][0][0], i+1, GRID_SIZE*GRID_SIZE);

    char s[256] = "0";
    //char s[256] = "123456123456123455";
    memcpy(grid_save, grid, sizeof(grid));


    print_grid();
    do
    {
        memcpy(grid, grid_save, sizeof(grid));
        inc_string_num(s);

        for (unsigned int i = 0; i < strlen(s); i++)
        {
            flood_fill(4, 4, grid[4][4], s[i] - '0');
        }
    } while(!check_grid());
    print_grid();

    printf("%s\n", s);

    return 0;
}

Soweit ich das beurteilen kann, ist dies der aktuelle Gewinner. Der Wettbewerb setzt voraus, dass:

Ihr Programm muss vollständig deterministisch sein. Pseudozufallslösungen sind zulässig, aber das Programm muss jedes Mal dieselbe Ausgabe für denselben Testfall generieren.

Prüfen

Das siegreiche Programm löst mit nur wenigen Schritten alle 100.000 in dieser Datei gefundenen Testfälle (gezippte Textdatei, 14,23 MB). Wenn zwei Lösungen die gleiche Anzahl von Schritten ausführen (z. B. wenn beide die optimale Strategie gefunden haben), gewinnt das kürzere Programm.

Da dies immer die niedrigste Anzahl von Schritten findet, um jedes Board zu vervollständigen, und keiner der anderen, ist es derzeit an der Spitze. Wenn sich jemand ein kürzeres Programm einfallen lässt, kann er gewinnen. Deshalb präsentiere ich die folgende größenoptimierte Version. Die Ausführung ist etwas langsamer, aber die Ausführungszeit ist nicht Teil der Gewinnbedingungen:

#include <stdio.h>
#include <string.h>
#define A 9
int g[A][A]={{3,3,5,4,1,3,4,1,5},{5,1,3,4,1,1,5,2,1},{6,5,2,3,4,3,3,4,3},{4,4,4,5,5,5,4,1,4},{6,2,5,3,3,1,1,6,6},{5,5,1,2,5,2,6,6,3},{6,1,1,5,3,6,2,3,6},{1,2,2,4,5,3,5,1,2},{3,6,6,1,5,1,3,2,4}};
int s[A][A];
int t[6][A][A];
void ff(int x,int y,int o,int n)
{if (g[y][x]==n)return;g[y][x]=n;if (y>0){if(g[y-1][x]==o)ff(x,y-1,o,n);}if(y<A-1){if(g[y+1][x]==o)ff(x,y+1,o,n);}if(x>0){if (g[y][x-1] == o)ff(x-1,y,o,n);}if(x<A-1){if(g[y][x+1]==o)ff(x+1,y,o,n);}}
bool check_g(void)
{for(int i=0;i<6;i++){if(!memcmp(g,&t[i][0][0],sizeof(g)))return(true);}return(0);}
void is(char*s){char*c;c=s+strlen(s)-1;*c+=1;while(*c>'6'){*c='1';if (c==s){strcat(s,"1");return;}c--;*c+=1;}}
void pr(void)
{int x, y;for(y=0;y<A;y++){for(x=0;x<A;x++)printf("%d ",g[y][x]);printf("\n");}printf("\n");}
int main(void)
{for(int i=0;i<6;i++)memset(&t[i][0][0],i+1,A*A);char s[256]="0";memcpy(s,g,sizeof(g));pr();do{memcpy(g,s,sizeof(g));is(s);for(int i=0;i<strlen(s);i++){ff(4,4,g[4][4],s[i]-'0');}}while(!check_g());
pr();printf("%s\n",s);return 0;}
Benutzer
quelle
Bisher ist es der einzige Eintrag, der jedes Mal die optimalste Lösung erhält. Ich würde behaupten, es ist auch eine bessere Referenzlösung für den letzten Platz. Tatsächlich bin ich nicht davon überzeugt, dass es tatsächlich einen besseren Weg gibt, um in jedem Fall eine optimale Lösung zu finden, und bisher hat noch niemand anderes das Gegenteil bewiesen.
Benutzer
1
Bis Sie tatsächlich die genaue Anzahl der Schritte finden kann es dauern wird, kann ich diese Lösung nicht akzeptieren , auch wenn es ist (theoretisch) die beste.
Joe Z.
Auch die
Joe Z.
Okay, ich habe die Rastergröße festgelegt. Weiß jemand, wie man die theoretische Mindestanzahl der erforderlichen Schritte berechnet?
Benutzer
Nee. Sie müssten ein Programm verwenden, um es zu lösen. Das ist es, was Sie gerade haben.
Joe Z.