Feuerwerk verschmelzen

13

Überblick

Ordnen Sie anhand einer Liste mit Feuerwerkskörpern a-zund Uhrzeiten 3-78Sicherungen an, damit alle zur richtigen Zeit aufleuchten.

Eine Eingabezeile besteht aus durch Leerzeichen getrennten Buchstaben und Zahlen:

a 3 b 6 c 6 d 8 e 9 f 9

Dieses Beispiel zeigt, dass Feuerwerk azur selben Zeit angezündet werden muss 3, bund czwar um 6, dum 8, mit eund fum 9. Jede Zeile entspricht einer Karte.

Der Ausgang ist eine Zünd- / Feuerwerkskarte für jede Zeile. Verwenden Sie die Symbole |-, um Zündungen anzuzeigen, und die Buchstaben, um ein Feuerwerk anzuzeigen.

Eine -Sicherung wird direkt links / rechts von Sicherungen und Feuerwerkskörpern angeschlossen, während eine |Sicherung mit den darüber / darunter befindlichen verbunden wird. Zum Beispiel sind die Sicherungen ||sind nicht verbunden, und -| sind .

Zum Beispiel sind zwei mögliche Antworten auf die obigen Fragen:

---a        ---------f
  |         |||   ||
  |-c       |||   de
--|--d      a||
| b |        |c
f   e        b

Alle Sicherungskarten sollten mit einer einzelnen -in der oberen linken Ecke beginnen. Das ist der Punkt, an dem Sie die Sicherung anzünden. Jeder Sicherungscharakter benötigt eine Sekunde zum Brennen. Wie Sie sehen, aist das in beiden Diagrammen in drei Sekunden erreicht, bin sechs usw.

Nun sind beide oben angegebenen Karten für die angegebenen Eingaben gültig, aber eine ist eindeutig effizienter. Der linke verwendet nur 13 Sicherungseinheiten, der rechte 20.

Sicherungen brennen nicht durch Feuerwerk! Für die Eingabe a 3 b 5ist dies also nicht gültig:

---a--b

Herausforderung

Ihr Ziel ist es, die Menge der verwendeten Sicherungen in allen Testfällen zu minimieren. Die Bewertung ist sehr einfach, die Gesamtmenge der verwendeten Sicherungseinheiten.

Wenn Sie keine Karte für einen Testfall erstellen können , unabhängig davon, ob es sich um einen unmöglichen Fall handelt oder nicht, ist die Punktzahl für diesen Fall die Summe aller Zeiten (41 im obigen Beispiel).

Bei einem Unentschieden wird die Wertung so geändert, dass die kompaktesten Karten gewinnen. Der Tiebreak-Score ist der Bereich des Begrenzungsrahmens jeder Karte. Das heißt, die Länge der längsten Zeile multipliziert mit der Anzahl der Zeilen. Bei "unmöglichen" Karten ist dies das Quadrat der größten Zahl (81 im obigen Beispiel).

In dem Fall, dass die Einsendungen beide Bewertungsmethoden binden, geht die Bindung an den früheren Eintrag / die frühere Bearbeitung.

Ihr Programm muss zu Überprüfungszwecken deterministisch sein.

Testfälle

Es gibt 250 Testfälle, hier befindet . Jedes hat zwischen 4 und 26 Feuerwerke. Die minimale Zündzeit für ein Feuerwerk beträgt 3. Das Feuerwerk ist jeweils nach Uhrzeit und Buchstaben "sortiert", dh es bwird nie zuvor angezündet a.

Bitte geben Sie bei der Veröffentlichung Ihr vollständiges Programm, Ihre Gesamtpunktzahl und die resultierende Karte für (mindestens) den ersten in der Datei angegebenen Testfall an:

a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34 
Geobits
quelle
Können beliebig viele Feuerwerke gleichzeitig abgefeuert werden?
Ingo Bürk
Grundsätzlich ja. Ich habe in meinen Testfällen nicht nach dem größten Exemplar dafür gesucht, aber ich weiß, dass es mindestens vier sind. Die Zeit zwischen zwei Sicherungen beträgt rand.nextInt(5)%4also 40% Chance 0und 20% für jede 1,2,3.
Geobits
Nur ein Vorschlag: Ich würde ein '+' verwenden, wenn die Sicherungen verbunden sind oder die Richtung ändern, was die Ausgabegrafiken meiner Meinung nach viel intuitiver machen würde!
Fehler
@flawr Ich werde das zulassen, vorausgesetzt, es wird so gemacht, dass sich die Punktzahl nicht ändert. Zum Beispiel, -+-anstelle von ---nicht automatisch connect Feuerwerk über / unter, hat es noch sein |unten oben / es zu einem Feuerwerk zu verbinden. -+-anstelle von -|-ist okay so wie es ist.
Geobits
Sind alle Testfälle lösbar? Wenn zum Beispiel zum Zeitpunkt 3 fünf oder mehr Feuerwerke abgefeuert werden müssten, könnte man sie meiner Meinung nach nicht alle kurz vor dem Start platzieren. In ähnlicher Weise können Sie möglicherweise alle einsetzen, aber sie blockieren möglicherweise den Weg nach außen für ein späteres Feuerwerk.
Martin Ender

Antworten:

3

C ++

Gesamtlänge: 9059, Gesamtfläche: 27469, Fehler: 13.

Hinweis: Die Punktzahl beinhaltet Fehlerstrafen.


Beispielausgabe:

a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34 
------ae  
     | |  
     |---c
     b||-g
      |d| 
      f | 
    i---| 
  k---| h 
   |  j   
   |---m  
   l  | t 
     o-n| 
      |s-r
      |-| 
      p q 
Length: 39, Area: 150.

a 6 b 6 c 6 d 6 e 6 f 6 g 6 h 8 i 9 j 9 k 9 l 12 m 12 n 13 o 14 p 15 q 15 r 15 s 17 t 17 u 17 v 17 w 17 x 20 y 23 z 26 
------a  n|--w 
|d-||---k|-o|  
| g|b  |--m --x
|-|c    ||--r| 
||f     l|-q | 
||--j u--|--s|-
e|-i    |p|  y|
 h      v t  z-
Length: 56, Area: 120.

Volle Ausgabe: http://pastebin.com/raw.php?i=spBUidBV


Lieben Sie nicht einfach Brute-Force-Lösungen? Dies ist ein bisschen mehr als ein einfacher Rückverfolgungsalgorithmus: Unser unermüdlicher Mitarbeiter bewegt sich auf der Karte und platziert nach Bedarf Zündschnüre und Feuerwerkskörper, während er alle möglichen Bewegungen zu jedem Zeitpunkt testet. Nun, fast - wir beschränken die Bewegungsmenge und geben nicht optimale Zustände frühzeitig auf, damit es nicht unerträglich lange dauert (und insbesondere damit es endet). Besondere Sorgfalt wird darauf verwendet, keine Zyklen oder unbeabsichtigten Aktionen zu erzeugen Wege gehen und nicht den gleichen Weg zurückgehen, den wir gekommen sind, so ist es garantiert, dass wir nicht zweimal denselben Staat besuchen. Trotzdem kann es eine Weile dauern, eine optimale Lösung zu finden. Daher geben wir die Optimierung einer Lösung auf, wenn sie zu lange dauert.

Dieser Algorithmus hat noch etwas Headroom. Zum einen lassen sich durch Erhöhen der FRUSTRATIONParameter bessere Lösungen finden . Es gibt keinen Geldautomaten der Konkurrenz, aber diese Nummern können erhöht werden, wenn und wann ...

Kompilieren mit: g++ fireworks.cpp -ofireworks -std=c++11 -pthread -O3.

Führen Sie mit: ./fireworks.

Liest die Eingabe von STDIN und schreibt die Ausgabe nach STDOUT (möglicherweise nicht in der richtigen Reihenfolge).

/* Magic numbers */
#define THREAD_COUNT 2
/* When FRUSTRATION_MOVES moves have passed since the last solution was found,
 * the last (1-FRUSTRATION_STATES_BACKOFF)*100% of the backtracking states are
 * discarded and FRUSTRATION_MOVES is multiplied by FRUSTRATION_MOVES_BACKOFF.
 * The lower these values are, the faster the algorithm is going to give up on
 * searching for better solutions. */
#define FRUSTRATION_MOVES 1000000
#define FRUSTRATION_MOVES_BACKOFF 0.8
#define FRUSTRATION_STATES_BACKOFF 0.5

#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <thread>
#include <mutex>
#include <string>
#include <sstream>
#include <cassert>

using namespace std;

/* A tile on the board. Either a fuse, a firework, an empty tile or an
 * out-of-boudns tile. */
struct tile {
    /* The tile's value, encoded the "obvious" way (i.e. '-', '|', 'a', etc.)
     * Empty tiles are encoded as '\0' and OOB tiles as '*'. */
    char value;
    /* For fuse tiles, the time at which the fuse is lit. */
    int time;

    operator char&() { return value; }
    operator const char&() const { return value; }

    bool is_fuse() const { return value == '-' || value == '|'; }
    /* A tile is vacant if it's empty or OOB. */
    bool is_vacant() const { return !value || value == '*'; }

    /* Prints the tile. */
    template <typename C, typename T>
    friend basic_ostream<C, T>& operator<<(basic_ostream<C, T>& os,
                                            const tile& t) {
        return os << (t.value ? t.value : ' ');
    }
};
/* Fireworks have the same encoding as tiles. */
typedef tile firework;
typedef vector<firework> fireworks;

/* The fuse map. It has physical dimensions (its bounding-box) but is
 * conceptually infinite (filled with empty tiles.) */
class board {
    /* The tiles, ordered left-to-right top-to-bottom. */
    vector<tile> p_data;
    /* The board dimensions. */
    int p_width, p_height;
    /* The total fuse length. */
    int p_length;

public:
    board(): p_width(0), p_height(0), p_length(0) {}

    /* Physical dimensions. */
    int width() const { return p_width; }
    int height() const { return p_height; }
    int area() const { return width() * height(); }
    /* Total fuse length. */
    int length() const { return p_length; }

    /* Returns the tile at (x, y). If x or y are negative, returns an OOB
     * tile. */
    tile get(int x, int y) const {
        if (x < 0 || y < 0)
            return {'*'};
        else if (x >= width() || y >= height())
            return {'\0'};
        else
            return p_data[y * width() + x];
    }
    /* Sets the tile at (x, y). x and y must be nonnegative and the tile at
     * (x, y) must be empty. */
    board& set(int x, int y, const tile& t) & {
        assert(x >= 0 && y >= 0);
        assert(!get(x, y));
        if (x >= width() || y >= height()) {
            int new_width = x >= width() ? x + 1 : width();
            int new_height = y >= height() ? y + 1 : height();
            vector<tile> temp(new_width * new_height, {'\0'});
            for (int l = 0; l < height(); ++l)
                copy(
                    p_data.begin() + l * width(),
                    p_data.begin() + (l + 1) * width(),
                    temp.begin() + l * new_width
                );
            p_data.swap(temp);
            p_width = new_width;
            p_height = new_height;
        }
        p_data[y * width() + x] = t;
        if (t.is_fuse())
            ++p_length;
        return *this;
    }
    board&& set(int x, int y, const tile& t) && { return move(set(x, y, t)); }

    /* Prints the board. */
    template <typename C, typename T>
    friend basic_ostream<C, T>& operator<<(basic_ostream<C, T>& os,
                                            const board& b) {
        for (int y = 0; y < b.height(); ++y) {
            for (int x = 0; x < b.width(); ++x)
                os << b.get(x, y);
            os << endl;
        }
        return os;
    }
};

/* A state of the tiling algorithm. */
struct state {
    /* The current board. */
    board b;
    /* The next firework to tile. */
    fireworks::const_iterator fw;
    /* The current location. */
    int x, y;
    /* The current movement direction. 'N'orth 'S'outh 'E'ast, 'W'est or
     * 'A'ny. */
    char dir;
};

/* Adds a state to the state-stack if its total fuse length and bounding-box
 * area are not worse than the current best ones. */
void add_state(vector<state>& states, int max_length, int max_area,
                state&& new_s) {
    if (new_s.b.length() < max_length ||
        (new_s.b.length() == max_length && new_s.b.area() <= max_area)
    )
        states.push_back(move(new_s));
}
/* Adds the state after moving in a given direction, if it's a valid move. */
void add_movement(vector<state>& states, int max_length, int max_area,
                    const state& s, char dir) {
    int x = s.x, y = s.y;
    char parallel_fuse;
    switch (dir) {
    case 'E': if (s.dir == 'W') return; ++x; parallel_fuse = '|'; break;
    case 'W': if (s.dir == 'E') return; --x; parallel_fuse = '|'; break;
    case 'S': if (s.dir == 'N') return; ++y; parallel_fuse = '-'; break;
    case 'N': if (s.dir == 'S') return; --y; parallel_fuse = '-'; break;
    }
    const tile t = s.b.get(s.x, s.y), nt = s.b.get(x, y);
    assert(t.is_fuse());
    if (nt.is_fuse() && !(t == parallel_fuse && nt == parallel_fuse))
        add_state(states, max_length, max_area, {s.b, s.fw, x, y, dir});
}
/* Adds the state after moving in a given direction and tiling a fuse, if it's a
 * valid move. */
void add_fuse(vector<state>& states, int max_length, int max_area,
                const state& s, char dir, char fuse) {
    int x = s.x, y = s.y;
    int sgn;
    bool horz;
    switch (dir) {
    case 'E': ++x; sgn = 1; horz = true; break;
    case 'W': --x; sgn = -1; horz = true; break;
    case 'S': ++y; sgn = 1; horz = false; break;
    case 'N': --y; sgn = -1; horz = false; break;
    }
    if (s.b.get(x, y))
        /* Tile is not empty. */
        return;
    /* Make sure we don't create cycles or reconnect a firework. */
    const tile t = s.b.get(s.x, s.y);
    assert(t.is_fuse());
    if (t == '-') {
        if (horz) {
            if (fuse == '-') {
                if (!s.b.get(x + sgn, y).is_vacant() ||
                    s.b.get(x, y - 1) == '|' ||
                    s.b.get(x, y + 1) == '|')
                    return;
            } else {
                if (s.b.get(x + sgn, y) == '-' ||
                    !s.b.get(x, y - 1).is_vacant() ||
                    !s.b.get(x, y + 1).is_vacant())
                    return;
            }
        } else {
            if (!s.b.get(x, y + sgn).is_vacant() ||
                s.b.get(x - 1, y) == '-' ||
                s.b.get(x + 1, y) == '-')
                return;
        }
    } else {
        if (!horz) {
            if (fuse == '|') {
                if (!s.b.get(x, y + sgn).is_vacant() ||
                    s.b.get(x - 1, y) == '-' ||
                    s.b.get(x + 1, y) == '-')
                    return;
            } else {
                if (s.b.get(x, y + sgn) == '|' ||
                    !s.b.get(x - 1, y).is_vacant() ||
                    !s.b.get(x + 1, y).is_vacant())
                    return;
            }
        } else {
            if (!s.b.get(x + sgn, y).is_vacant() ||
                s.b.get(x, y - 1) == '|' ||
                s.b.get(x, y + 1) == '|')
                return;
        }
    }
    /* Ok. */
    add_state(
        states,
        max_length,
        max_area,
        {board(s.b).set(x, y, {fuse, t.time + 1}), s.fw, x, y, dir}
    );
}
/* Adds the state after adding a firework at the given direction, if it's a
 * valid move. */
void add_firework(vector<state>& states, int max_length, int max_area,
                    const state& s, char dir) {
    int x = s.x, y = s.y;
    int sgn;
    bool horz;
    switch (dir) {
    case 'E': ++x; sgn = 1; horz = true; break;
    case 'W': --x; sgn = -1; horz = true; break;
    case 'S': ++y; sgn = 1; horz = false; break;
    case 'N': --y; sgn = -1; horz = false; break;
    }
    if (s.b.get(x, y))
        /* Tile is not empty. */
        return;
    /* Make sure we don't run into an undeliberate fuse. */
    if (horz) {
        if (s.b.get(x + sgn, y) == '-' || s.b.get(x, y - 1) == '|' ||
            s.b.get(x, y + 1) == '|')
            return;
    } else {
        if (s.b.get(x, y + sgn) == '|' || s.b.get(x - 1, y) == '-' ||
            s.b.get(x + 1, y) == '-')
            return;
    }
    /* Ok. */
    add_state(
        states,
        max_length,
        max_area,
        /* After adding a firework, we can move in any direction. */
        {board(s.b).set(x, y, {*s.fw}), s.fw + 1, s.x, s.y, 'A'}
    );
}
void add_possible_moves(vector<state>& states, int max_length, int max_area,
                        const state& s) {
    /* We add the new states in reverse-desirability order. The most
     * (aesthetically) desirable states are added last. */

    const tile t = s.b.get(s.x, s.y);
    assert(t.is_fuse());

    /* Move in all (possible) directions. */
    for (char dir : "WENS")
        if (dir) add_movement(states, max_length, max_area, s, dir);

    /* If the fuse is too short for the next firework, keep adding fuse. */
    if (t.time < s.fw->time) {
        if (t == '-') {
            add_fuse(states, max_length, max_area, s, 'N', '|');
            add_fuse(states, max_length, max_area, s, 'S', '|');
            add_fuse(states, max_length, max_area, s, 'W', '|');
            add_fuse(states, max_length, max_area, s, 'W', '-');
            add_fuse(states, max_length, max_area, s, 'E', '|');
            add_fuse(states, max_length, max_area, s, 'E', '-');
        } else {
            add_fuse(states, max_length, max_area, s, 'W', '-');
            add_fuse(states, max_length, max_area, s, 'E', '-');
            add_fuse(states, max_length, max_area, s, 'N', '-');
            add_fuse(states, max_length, max_area, s, 'N', '|');
            add_fuse(states, max_length, max_area, s, 'S', '-');
            add_fuse(states, max_length, max_area, s, 'S', '|');
        }
    } else if (t.time == s.fw->time) {
        /* If we have enough fuse for the next firework, place the firework (if
         * possible) and don't add more fuse, or else we'll never finish... */
        if (t == '-') {
            add_firework(states, max_length, max_area, s, 'W');
            add_firework(states, max_length, max_area, s, 'E');
        } else {
            add_firework(states, max_length, max_area, s, 'N');
            add_firework(states, max_length, max_area, s, 'S');
        }
    }
}

void thread_proc(mutex& lock, int& total_length, int& total_area,
                    int& failures) {
    fireworks fw;
    vector<state> states;

    while (true) {
        /* Read input. */
        string input;
        {
            lock_guard<mutex> lg(lock);

            while (!cin.eof() && input.empty())
                getline(cin, input);
            if (input.empty())
                break;
        }
        fw.clear();
        int length = 0, area;
        {
            stringstream is;
            is << input;
            while (!is.eof()) {
                char c;
                int t;
                if (is >> c >> t) {
                    /* Fireworks must be sorted by launch time. */
                    assert(fw.empty() || t >= fw.back().time);
                    fw.push_back({c, t});
                    length += t;
                }
            }
            assert(!fw.empty());
            area = fw.back().time * fw.back().time;
        }

        /* Add initial state. */
        states.push_back({board().set(0, 0, {'-', 1}), fw.begin(), 0, 0, 'A'});

        board solution;
        int moves = 0;
        int frustration_moves = FRUSTRATION_MOVES;

        while (!states.empty()) {
            /* Check for solutions (all fireworks consumed.) */
            while (!states.empty() && states.back().fw == fw.end()) {
                state& s = states.back();
                /* Did we find a better solution? */
                if (solution.area() == 0 || s.b.length() < length ||
                    (s.b.length() == length && s.b.area() < area)
                ) {
                    solution = move(s.b);
                    moves = 0;
                    length = solution.length();
                    area = solution.area();
                }
                states.pop_back();
            }

            /* Expand the top state. */
            if (!states.empty()) {
                state s = move(states.back());
                states.pop_back();
                add_possible_moves(states, length, area, s);
            }

            /* Getting frustrated? */
            ++moves;
            if (moves > frustration_moves) {
                /* Get rid of some data. */
                states.erase(
                    states.begin() + states.size() * FRUSTRATION_STATES_BACKOFF,
                    states.end()
                );
                frustration_moves *= FRUSTRATION_MOVES_BACKOFF;
                moves = 0;
            }
        }

        /* Print solution. */
        {
            lock_guard<mutex> lg(lock);

            cout << input << endl;

            if (solution.area())
                cout << solution;
            else {
                cout << "FAILED!" << endl;
                ++failures;
            }

            cout << "Length: " << length <<
                    ", Area: " << area <<
                    "." << endl << endl;
            total_length += length;
            total_area += area;
        }
    }
}

int main(int argc, const char* argv[]) {
    thread threads[THREAD_COUNT];
    mutex lock;
    int total_length = 0, total_area = 0, failures = 0;

    for (int i = 0; i < THREAD_COUNT; ++i)
        threads[i] = thread(thread_proc, ref(lock), ref(total_length),
                            ref(total_area), ref(failures));
    for (int i = 0; i < THREAD_COUNT; ++i)
        threads[i].join();

    cout << "Total Length: " << total_length <<
            ", Total Area: " << total_area <<
            ", Failures: " << failures <<
            "." << endl;
}

Python

Gesamtlänge: 17387, Gesamtfläche: 62285, Fehler: 44.


Beispielausgabe:

a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34
------a                
     |----f            
     |---c             
     b|||---h          
      |dg  |           
      e    |-j         
           |---k       
           i  |        
              |---m    
              l  |-o   
                 |--p  
                 n |--s
                   |-r 
                   q|  
                    t  
Length: 45, Area: 345.

Volle Ausgabe: http://pastebin.com/raw.php?i=mgiqXCRK


Als Referenz ist hier ein viel einfacherer Ansatz. Es wird versucht, ein Feuerwerk an eine einzige Hauptsicherungsleitung anzuschließen, wodurch eine "Treppenform" entsteht. Wenn ein Feuerwerk nicht direkt mit der Hauptlinie verbunden werden kann (was passiert, wenn zwei oder mehr Feuerwerke gleichzeitig angezündet werden), wird die Hauptlinie nach einem Punkt zurückverfolgt, an dem es senkrecht nach unten oder rechts abzweigen kann (und wenn dies fehlschlägt) Es gibt keinen solchen Punkt.)

Es überrascht nicht , tut es schlimmer als der Brute-Force - Löser, aber nicht durch einen großen Spielraum. Ehrlich gesagt hatte ich erwartet, dass der Unterschied etwas größer sein würde.

Führen Sie mit: python fireworks.py.

from __future__ import print_function
import sys

total_length = total_area = failures = 0

for line in sys.stdin:
    # Read input.
    line = line.strip()
    if line == "": continue
    fws = line.split(' ')
    # The fireworks are a list of pairs of the form (<letter>, <time>).
    fws = [(fws[i], int(fws[i + 1])) for i in xrange(0, len(fws), 2)]

    # The board is a dictionary of the form <coord>: <tile>.
    # The first tile marks the "starting point" and is out-of-bounds.
    board = {(-1, 0): '*'}
    # The tip of the main "staircase" fuse.
    tip_x, tip_y = -1, 0
    tip_time = 0
    # We didn't fail. Yet...
    failed = False

    for (fw, fw_time) in fws:
        dt = fw_time - tip_time
        # Can we add the firework to the main fuse line?
        if dt > 0:
            # We can. Alternate the direction to create a "staircase" pattern.
            if board[(tip_x, tip_y)] == '-':    dx, dy = 0, 1; fuse = '|'
            else:                               dx, dy = 1, 0; fuse = '-'
            x, y = tip_x, tip_y
            tip_x += dt * dx
            tip_y += dt * dy
            tip_time += dt
        else:
            # We can't. Trace the main fuse back until we find a point where we
            # can thread, or fail if we reach the starting point.
            x, y = tip_x, tip_y
            while board[(x, y)] != '*':
                horz = board[(x, y)] == '-'
                if horz:    dx, dy = 0, 1; fuse = '|'
                else:       dx, dy = 1, 0; fuse = '-'
                if dt > 0 and (x + dx, y + dy) not in board: break
                if horz:    x -= 1
                else:       y -= 1
                dt += 1
            if board[(x, y)] == '*':
                failed = True
                break
        # Add the fuse and firework.
        for i in xrange(dt):
            x += dx; y += dy
            board[(x, y)] = fuse
        board[(x + dx, y + dy)] = fw

    # Print output.
    print(line)
    if not failed:
        max_x, max_y = (max(board, key=lambda p: p[i])[i] + 1 for i in (0, 1))
        for y in xrange(max_y):
            for x in xrange(max_x):
                print(board.get((x, y), ' '), end = "")
            print()
        length = len(board) - len(fws) - 1
        area = max_x * max_y
    else:
        print("FAILED!")
        failures += 1
        length = sum(map(lambda fw: fw[1], fws))
        area = fws[-1][1] ** 2
    print("Length: %d, Area: %d.\n" % (length, area))
    total_length += length; total_area += area

print("Total Length: %d, Total Area: %d, Failures: %d." %
        (total_length, total_area, failures))
DarwinBot
quelle
Wie lange dauert dies aus Neugier mit den aktuellen Parametern?
Geobits
@Geobits: Es ist natürlich maschinenabhängig und ich habe nicht zu genau hingesehen, aber ich denke über zwanzig Minuten nach, gib oder nimm.
DarwinBot