Finde die größte Lücke zwischen guten Primzahlen

28

Nach der guten Tradition von Fragen wie Finden der größten Primzahl, deren Länge, Summe und Produkt die Primzahl ist , ist dies eine Variante einer größten Primzahlherausforderung.

Eingang

Ihr Code sollte keine Eingabe annehmen.

Definition

Wir sagen , eine Primzahl pist , goodwenn p-1genau hat 2verschiedene Primfaktoren.

Ausgabe

Ihr Code sollte den absoluten Unterschied zwischen aufeinanderfolgenden guten Primzahlen ausgeben qund pso |q-p|groß wie möglich und qdie kleinste gute Primzahl größer als p. Sie können beliebig viele gute Paare ausgeben und Ihre letzte Ausgabe wird als Punktzahl gewertet.

Beispiel

Die Reihenfolge der ersten 55 guten Primzahlen lautet https://oeis.org/A067466 .

Ergebnis

Ihre Punktzahl bezieht sich einfach |q-p|auf das Paar guter Primzahlen, die Sie ausgeben.

Sprachen und Bibliotheken

Sie können eine beliebige Sprache oder Bibliothek verwenden (die nicht für diese Herausforderung entwickelt wurde), mit Ausnahme von Bibliotheksfunktionen zum Testen der Primalität oder zum Berücksichtigen von Ganzzahlen. Zum Zwecke der Bewertung werde ich jedoch Ihren Code auf meinem Computer ausführen. Geben Sie daher bitte klare Anweisungen für die Ausführung unter Ubuntu.

Mein Computer Die Timings werden auf meinem Computer ausgeführt. Dies ist eine Standard-Ubuntu-Installation auf einem 8-GB-AMD FX-8350-Prozessor mit acht Kernen. Dies bedeutet auch, dass ich in der Lage sein muss, Ihren Code auszuführen.

Einzelheiten

  • Ich werde Ihren Code nach 2 Minuten töten, es sei denn, ihm geht vorher der Speicherplatz aus. Es sollte daher darauf geachtet werden, vor dem Abschneiden etwas auszugeben.
  • Sie dürfen keine externe Quelle für Primzahlen verwenden.
  • Sie können probabilistische Prime-Testmethoden anwenden, obwohl Mego mir sagt, dass Miller-Rabin mit guten Tabellen deterministisch bis zu 341.550.071.728.321 (oder sogar höher) testen kann. Siehe auch http://miller-rabin.appspot.com/ .

Beste Einträge, die alle ganzen Zahlen von 1 prüfen

  • 756 von Katze in Go
  • 756 von El'endia Starman in Python
  • 1932 von Adnan in C # (mit Mono 3.2.8)
  • 2640 von yeti in Python (mit pypy 4.01)
  • 2754 von Reto Koradi in C ++
  • 3486 von Peter Taylor in Java
  • 3900 von primo in RPython (mit pypy 4.01)
  • 4176 von The Coder in Java

Beste Einträge, bei denen eine große Anzahl von ganzen Zahlen übersprungen werden kann, um eine große Lücke zu finden

  • 14226 von Reto Koradi in C ++
  • 22596 von primo in RPython (mit pypy 4.01). Rekord nach 5 Sekunden erreicht!
Gemeinschaft
quelle
Diese Definition ähnelt der Definition der sicheren Primzahl , und abgesehen von 5 = 2 * 2 +1 ist jede sichere Primzahl eine "gute Primzahl". (Obwohl es gute Primzahlen gibt, die keine sicheren Primzahlen sind, wie z. B. 13 = 2 * 2 * 3 + 1, hilft dies bei der Herausforderung
vermutlich
@ PaŭloEbermann Bin ich mir sicher, dass nicht einmal bekannt ist, ob es unendlich viele sichere Primzahlen gibt? Würde dies bedeuten, dass wir nicht sicher sind, ob es unendlich viele gute Primzahlen gibt?
@Lembik Ich bin kein wirklicher Experte für sichere Primzahlen. Ich habe nur bemerkt, dass die Definitionen ziemlich ähnlich sind, und habe die sicheren Primzahlen nachgeschlagen.
Paŭlo Ebermann
Ich habe es gerade in Labview gemacht, was wahrscheinlich nicht möglich ist. Ich komme gerade auf 1686, gibt es eine Möglichkeit für mich, das Ranking zu erreichen? wenn ja, geh und optimisze es ein wenig.
Eumel

Antworten:

12

RPython (PyPy 4.0.1), 4032

RPython ist eine eingeschränkte Teilmenge von Python, die in C übersetzt und dann mit der RPython-Toolchain kompiliert werden kann. Ihr ausdrücklicher Zweck besteht darin, die Erstellung von Sprachinterpreten zu unterstützen, sie können jedoch auch zum Kompilieren einfacher Programme verwendet werden.

Laden Sie zum Kompilieren die aktuelle PyPy-Quelle (PyPy 4.0.1) herunter und führen Sie Folgendes aus:

$ pypy /pypy-4.0.1-src/rpython/bin/rpython --opt=3 good-primes.py

Die resultierende ausführbare Datei wird good-primes-cim aktuellen Arbeitsverzeichnis benannt oder ähnlich.


Implementierungshinweise

Der Primzahlengenerator primesist ein unbegrenztes Eratosthenes-Sieb, bei dem ein Rad verwendet wird, um Vielfache von 2 , 3 , 5 oder 7 zu vermeiden . Es ruft sich auch rekursiv auf, um den nächsten Wert für die Markierung zu generieren. Ich bin sehr zufrieden mit diesem Generator. Die Linienprofilerstellung zeigt, dass die langsamsten zwei Linien sind:

37>      n += o
38>      if n not in sieve:

Daher denke ich, dass es nicht viel Raum für Verbesserungen gibt, außer vielleicht ein größeres Rad zu verwenden.

Für die "Güte" -Prüfung werden zuerst alle Faktoren von zwei aus n-1 entfernt , wobei ein Bit-Twiddling-Hack verwendet wird, um die größte Zweierpotenz zu finden, die ein Divisor ist (n-1 & 1-n). Da p-1 notwendigerweise für jede Primzahl p> 2 gilt , muss 2 einer der unterschiedlichen Primfaktoren sein. Was übrig bleibt, wird an die is_prime_powerFunktion gesendet, die das tut, was der Name impliziert. Die Prüfung, ob ein Wert eine Primzahl ist, ist "nahezu frei", da sie gleichzeitig mit der Primalitätsprüfung mit höchstens O (log p n) -Operationen durchgeführt wird, wobei p der kleinste Primfaktor von n ist. Die Teilung der Versuche mag ein bisschen naiv erscheinen, aber meiner Meinung nach ist sie die schnellste Methode für Werte unter 2 32 . Ich spare ein bisschen, indem ich das Rad vom Sieb wieder benutze. Bestimmtes:

59>      while p*p < n:
60>        for o in offsets:

Wenn Sie über ein Rad der Länge 48 iterieren, wird der p*p < nScheck tausende Male übersprungen, und zwar zu dem niedrigen Preis von nicht mehr als 48 zusätzlichen Modulo-Operationen. Außerdem werden mehr als 77% aller Kandidaten übersprungen, anstatt 50%, wenn nur Quoten berücksichtigt werden.

Die letzten Ausgaben sind:

3588 (987417437 - 987413849) 60.469000s
3900 (1123404923 - 1123401023) 70.828000s
3942 (1196634239 - 1196630297) 76.594000s
4032 (1247118179 - 1247114147) 80.625000s
4176 (1964330609 - 1964326433) 143.047000s
4224 (2055062753 - 2055058529) 151.562000s

Der Code ist auch in Python gültig und sollte 3588 ~ 3900 erreichen, wenn er mit einem aktuellen PyPy-Interpreter ausgeführt wird.


# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
# distances between sieve values, starting from 211
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

# tabulated, mod 105
dindices =[
  0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
  0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
  0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
  0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]

def primes(start = 0):
  for n in small_primes[start:]: yield n
  pg = primes(6)
  p = pg.next()
  q = p*p
  sieve = {221: 13, 253: 11}
  n = 211
  while True:
    for o in offsets:
      n += o
      stp = sieve.pop(n, 0)
      if stp:
        nxt = n/stp
        nxt += dindices[nxt%105]
        while nxt*stp in sieve: nxt += dindices[nxt%105]
        sieve[nxt*stp] = stp
      else:
        if n < q:
          yield n
        else:
          sieve[q + dindices[p%105]*p] = p
          p = pg.next()
          q = p*p

def is_prime_power(n):
  for p in small_primes:
    if n%p == 0:
      n /= p
      while n%p == 0: n /= p
      return n == 1
  p = 211
  while p*p < n:
    for o in offsets:
      p += o
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1
  return n > 1

def main(argv):
  from time import time
  t0 = time()
  m = 0
  p = q = 7
  pgen = primes(3)

  for n in pgen:
    d = (n-1 & 1-n)
    if is_prime_power(n/d):
      p, q = q, n
      if q-p > m:
        m = q-p
        print m, "(%d - %d) %fs"%(q, p, time()-t0)

  return 0

def target(*args):
  return main, None

if __name__ == '__main__':
  from sys import argv
  main(argv)

RPython (PyPy 4.0.1), 22596

Diese Vorlage unterscheidet sich geringfügig von den anderen bisher veröffentlichten, da sie nicht alle guten Primzahlen überprüft, sondern stattdessen relativ große Sprünge ausführt. Ein Nachteil dabei ist, dass Siebe nicht verwendet werden können [ich stehe korrigiert da?] , So dass man sich ausschließlich auf Primärtests verlassen muss, die in der Praxis etwas langsamer sind. Es gibt auch ein glückliches Medium zwischen der Wachstumsrate und der Anzahl der Werte, die jedes Mal überprüft werden. Kleinere Werte lassen sich viel schneller überprüfen, größere Werte weisen jedoch mit größerer Wahrscheinlichkeit größere Lücken auf.

Um die mathematischen Götter zu besänftigen, habe ich mich für eine Fibonacci-ähnliche Sequenz entschieden, bei der der nächste Startpunkt die Summe der beiden vorherigen ist. Wenn nach der Prüfung von 10 Paaren keine neuen Datensätze gefunden werden, wird das Skript beim nächsten fortgesetzt.

Die letzten Ausgaben sind:

6420 (12519586667324027 - 12519586667317607) 0.364000s
6720 (707871808582625903 - 707871808582619183) 0.721000s
8880 (626872872579606869 - 626872872579597989) 0.995000s
10146 (1206929709956703809 - 1206929709956693663) 4.858000s
22596 (918415168400717543 - 918415168400694947) 8.797000s

Beim Kompilieren werden 64-Bit-Ganzzahlen verwendet, obwohl an einigen Stellen davon ausgegangen wird, dass zwei Ganzzahlen ohne Überlauf hinzugefügt werden können, sodass in der Praxis nur 63 verwendbar sind. Bei Erreichen von 62 signifikanten Bits wird der aktuelle Wert zweimal halbiert, um einen Überlauf in der Berechnung zu vermeiden. Das Ergebnis ist, dass das Skript Werte im Bereich von 2 60 - 2 62 durchmischt. Wenn Sie die native Ganzzahlgenauigkeit nicht übertreffen, wird das Skript auch bei der Interpretation schneller.

Das folgende PARI / GP-Skript kann verwendet werden, um dieses Ergebnis zu bestätigen:

isgoodprime(n) = isprime(n) && omega(n-1)==2

for(n = 918415168400694947, 918415168400717543, {
  if(isgoodprime(n), print(n" is a good prime"))
})

try:
  from rpython.rlib.rarithmetic import r_int64

  from rpython.rtyper.lltypesystem.lltype import SignedLongLongLong
  from rpython.translator.c.primitive import PrimitiveType

  # check if the compiler supports long long longs
  if SignedLongLongLong in PrimitiveType:

    from rpython.rlib.rarithmetic import r_longlonglong

    def mul_mod(a, b, m):
      return r_int64(r_longlonglong(a)*b%m)

  else:

    from rpython.rlib.rbigint import rbigint

    def mul_mod(a, b, m):
      biga = rbigint.fromrarith_int(a)
      bigb = rbigint.fromrarith_int(b)
      bigm = rbigint.fromrarith_int(m)

      return biga.mul(bigb).mod(bigm).tolonglong()


  # modular exponentiation b**e (mod m)
  def pow_mod(b, e, m):
    r = 1
    while e:
      if e&1: r = mul_mod(b, r, m)
      e >>= 1
      b = mul_mod(b, b, m)
    return r

except:

  import sys

  r_int64 = int
  if sys.maxint == 2147483647:
    mul_mod = lambda a, b, m: a*b%m
  else:
    mul_mod = lambda a, b, m: int(a*b%m)
  pow_mod = pow


# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
  return pow_mod(a, (m-1) >> 1, m)


# strong probable prime
def is_sprp(n, b=2):
  if n < 2: return False
  d = n-1
  s = 0
  while d&1 == 0:
    s += 1
    d >>= 1

  x = pow_mod(b, d, n)
  if x == 1 or x == n-1:
    return True

  for r in xrange(1, s):
    x = mul_mod(x, x, n)
    if x == 1:
      return False
    elif x == n-1:
      return True

  return False


# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
  Q = (1-D) >> 2

  # n+1 = 2**r*s where s is odd
  s = n+1
  r = 0
  while s&1 == 0:
    r += 1
    s >>= 1

  # calculate the bit reversal of (odd) s
  # e.g. 19 (10011) <=> 25 (11001)
  t = r_int64(0)
  while s:
    if s&1:
      t += 1
      s -= 1
    else:
      t <<= 1
      s >>= 1

  # use the same bit reversal process to calculate the sth Lucas number
  # keep track of q = Q**n as we go
  U = 0
  V = 2
  q = 1
  # mod_inv(2, n)
  inv_2 = (n+1) >> 1
  while t:
    if t&1:
      # U, V of n+1
      U, V = mul_mod(inv_2, U + V, n), mul_mod(inv_2, V + mul_mod(D, U, n), n)
      q = mul_mod(q, Q, n)
      t -= 1
    else:
      # U, V of n*2
      U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
      q = mul_mod(q, q, n)
      t >>= 1

  # double s until we have the 2**r*sth Lucas number
  while r:
    U, V = mul_mod(U, V, n), (mul_mod(V, V, n) - 2 * q) % n
    q = mul_mod(q, q, n)
    r -= 1

  # primality check
  # if n is prime, n divides the n+1st Lucas number, given the assumptions
  return U == 0


# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
    1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
   53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
  107,109,113,121,127,131,137,139,143,149,151,157,
  163,167,169,173,179,181,187,191,193,197,199,209]

# distances between sieve values
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

bit_lengths = [
  0x00000000, 0x00000001, 0x00000003, 0x00000007,
  0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
  0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
  0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
  0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
  0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
  0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
  0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF]

max_int = 2147483647


# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
  s = 0
  e = len(a)
  m = e >> 1
  while m != e:
    if a[m] < x:
      s = m
      m = (s + e + 1) >> 1
    else:
      e = m
      m = (s + e) >> 1
  return m


def log2(n):
  hi = n >> 32
  if hi:
    return binary_search(bit_lengths, hi) + 32
  return binary_search(bit_lengths, n)


# integer sqrt of n
def isqrt(n):
  c = n*4/3
  d = log2(c)

  a = d>>1
  if d&1:
    x = r_int64(1) << a
    y = (x + (n >> a)) >> 1
  else:
    x = (r_int64(3) << a) >> 2
    y = (x + (c >> a)) >> 1

  if x != y:
    x = y
    y = (x + n/x) >> 1
    while y < x:
      x = y
      y = (x + n/x) >> 1
  return x

# integer cbrt of n
def icbrt(n):
  d = log2(n)

  if d%3 == 2:
    x = r_int64(3) << d/3-1
  else:
    x = r_int64(1) << d/3

  y = (2*x + n/(x*x))/3
  if x != y:
    x = y
    y = (2*x + n/(x*x))/3
    while y < x:
      x = y
      y = (2*x + n/(x*x))/3
  return x


## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
  if not is_sprp(n, 2): return False

  # idea shamelessly stolen from Mathmatica's PrimeQ
  # if n is a 2-sprp and a 3-sprp, n is necessarily square-free
  if not is_sprp(n, 3): return False

  a = 5
  s = 2
  # if n is a perfect square, this will never terminate
  while legendre(a, n) != n-1:
    s = -s
    a = s-a
  return is_lucas_prp(n, a)


# an 'almost certain' primality check
def is_prime(n):
  if n < 212:
    m = binary_search(small_primes, n)
    return n == small_primes[m]

  for p in small_primes:
    if n%p == 0:
      return False

  # if n is a 32-bit integer, perform full trial division
  if n <= max_int:
    p = 211
    while p*p < n:
      for o in offsets:
        p += o
        if n%p == 0:
          return False
    return True

  return is_bpsw(n)


# next prime strictly larger than n
def next_prime(n):
  if n < 2:
    return 2

  # first odd larger than n
  n = (n + 1) | 1
  if n < 212:
    m = binary_search(small_primes, n)
    return small_primes[m]

  # find our position in the sieve rotation via binary search
  x = int(n%210)
  m = binary_search(indices, x)
  i = r_int64(n + (indices[m] - x))

  # adjust offsets
  offs = offsets[m:] + offsets[:m]
  while True:
    for o in offs:
      if is_prime(i):
        return i
      i += o


# true if n is a prime power > 0
def is_prime_power(n):
  if n > 1:
    for p in small_primes:
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1

    r = isqrt(n)
    if r*r == n:
      return is_prime_power(r)

    s = icbrt(n)
    if s*s*s == n:
      return is_prime_power(s)

    p = r_int64(211)
    while p*p < r:
      for o in offsets:
        p += o
        if n%p == 0:
          n /= p
          while n%p == 0: n /= p
          return n == 1

    if n <= max_int:
      while p*p < n:
        for o in offsets:
          p += o
          if n%p == 0:
            return False
      return True

    return is_bpsw(n)
  return False


def next_good_prime(n):
  n = next_prime(n)
  d = (n-1 & 1-n)
  while not is_prime_power(n/d):
    n = next_prime(n)
    d = (n-1 & 1-n)
  return n


def main(argv):
  from time import time
  t0 = time()

  if len(argv) > 1:
    n = r_int64(int(argv[1]))
  else:
    n = r_int64(7)

  if len(argv) > 2:
    limit = int(argv[2])
  else:
    limit = 10

  m = 0
  e = 1
  q = n
  try:
    while True:
      e += 1
      p, q = q, next_good_prime(q)
      if q-p > m:
        m = q-p
        print m, "(%d - %d) %fs"%(q, p, time()-t0)
        n, q = p, n+p
        if log2(q) > 61:
          q >>= 2
        e = 1
        q = next_good_prime(q)
      elif e > limit:
        n, q = p, n+p
        if log2(q) > 61:
          q >>= 2
        e = 1
        q = next_good_prime(q)
  except KeyboardInterrupt:
    pass
  return 0

def target(*args):
  return main, None

if __name__ == '__main__':
  from sys import argv
  main(argv)
primo
quelle
Euer Willkommen;) Kleines Update, erreicht auf meinem Rechner 3330 ca. 15 Sekunden schneller (und bald darauf geht der Speicher aus ...).
Primo
1
Das tut es in der Tat.
1
@Lembik Ich denke, dort gibt es möglicherweise ein unerforschtes Potenzial. Das Beste, was ich durch Platzieren von "Zufallstiefenladungen" (Sequenzen, die wie n wachsen ! ) Finden konnte, ist 8274 (85773786705365303 - 85773786705357029). Ich kann es als Bonusbeitrag hinzufügen.
Primo
1
Mit pypy (nicht kompiliert) erhalte ich 13386 (32770812521685383 - 32770812521671997) 21.64s. Das geht ziemlich schnell!
1
22596 (918415168400717543 - 918415168400694947) 4.786576s :)
19

Vermutlich 4032, gemischtes Atkin-Bernstein-Sieb und "deterministisches" Miller-Rabin

Radfaktorisierung und gute Primzahlen

Es ist sehr offensichtlich, dass mit Ausnahme von 2, 3 und 5 jede Primzahl Coprime zu 2 * 3 * 5 = 60 ist. Es gibt 16 Äquivalenzklassen modulo 60, die Coprime zu 60 sind, sodass jeder Primalitätstest nur diese prüfen muss 16 Fälle.

Wenn wir jedoch nach "guten" Primzahlen suchen, können wir die Herde noch weiter ausdünnen. Wenn gcd(x, 60) = 1, stellen wir fest, dass in den meisten Fällen gcd(x-1, 60)entweder 6 oder 10 ist. Es gibt 6 Werte, xfür die es 2 ist:

17, 23, 29, 47, 53, 59

Deshalb können wir die „guten“ Primzahlen der Form vorauszuberechnen 2^a 3^b + 1und 2^a 5^b + 1und verschmelzen sie zu dem Ergebnis eines Strichs Generator, der nur 10% der Zahlen als auch der Auffassung , potentielle Primzahlen.

Implementierungshinweise

Da ich bereits eine Java-Implementierung des Atkin-Bernstein-Siebs hatte, die bereits ein Rad als Schlüsselkomponente verwendet, schien es naheliegend, die unnötigen Speichen herauszulösen und den Code anzupassen. Ich habe ursprünglich versucht, eine Producer-Consumer-Architektur zu verwenden, um die 8 Kerne auszunutzen, aber die Speicherverwaltung war zu unübersichtlich.

Um zu testen, ob eine Primzahl eine "gute" Primzahl ist, verwende ich einen "deterministischen" Miller-Rabin-Test (was wirklich einen Miller-Rabin-Test bedeutet, den eine andere Person anhand einer deterministisch generierten Liste vorab überprüft hat). Dies kann sicherlich umgeschrieben werden, um auch Atkin-Bernstein zu verwenden, mit etwas Zwischenspeicherung, um die Bereiche abzudecken, die sqrt, cbrt usw. entsprechen, aber ich bin nicht sicher, ob es eine Verbesserung sein würde (weil es viele Zahlen testen würde, die Ich muss nicht testen), das ist also ein Experiment für einen anderen Tag.

Auf meinem ziemlich alten Computer läuft dies zu

987417437 - 987413849 = 3588
1123404923 - 1123401023 = 3900
1196634239 - 1196630297 = 3942
1247118179 - 1247114147 = 4032

in ziemlich genau 2 Minuten und dann

1964330609 - 1964326433 = 4176
2055062753 - 2055058529 = 4224
2160258917 - 2160254627 = 4290

um 3:10, 3:20 bzw. 3:30.

import java.util.*;

public class PPCG65876 {
    public static void main(String[] args) {
        long[] specials = genSpecials();
        int nextSpecialIdx = 0;
        long nextSpecial = specials[nextSpecialIdx];
        long p = 59;
        long bestGap = 2;

        for (long L = 1; true; L += B) {

            long[][] buf = new long[6][B >> 6];
            int[] Lmodqq = new int[qqtab.length];
            for (int i = 0; i < Lmodqq.length; i++) Lmodqq[i] = (int)(L % qqtab[i]);

            for (long[] arr : buf) Arrays.fill(arr, -1); // TODO Can probably get a minor optimisation by inverting this
            for (int[] parms : elliptic) traceElliptic(buf[parms[0]], parms[1], parms[2], parms[3] - L, parms[4], parms[5], Lmodqq, totients[parms[0]]);
            for (int[] parms : hyperbolic) traceHyperbolic(buf[parms[0]], parms[1], parms[2], parms[3] - L, Lmodqq, totients[parms[0]]);

            // We need to filter down to squarefree numbers.
            long pg_base = L * M;
            squarefreeMid(buf, invTotients, pg_base, 247, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 253, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 257, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 263, 1, 38);
            squarefreeMid(buf, invTotients, pg_base, 241, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 251, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 259, 0, 2);
            squarefreeMid(buf, invTotients, pg_base, 269, 0, 2);

            // Turn bitmasks into primes
            long[] page = new long[150000]; // TODO This can almost certainly be smaller
            long[] transpose = new long[6];
            for (int j = 0, off = 0; j < (B >> 6); j++) {
                // Reduce cache locality problems by transposing.
                for (int k = 0; k < 6; k++) transpose[k] = buf[k][j];
                for (long mask = 1L; mask != 0; mask <<= 1) {
                    for (int k = 0; k < 6; k++) {
                        if ((transpose[k] & mask) == 0) page[off++] = pg_base + totients[k];
                    }

                    pg_base += M;
                }
            }

            // Insert specials and look for gaps.
            for (long q : page) {
                if (q == 0) break;

                // Do we need to insert one or more specials?
                while (nextSpecial < q) {
                    if (nextSpecial - p > bestGap) {
                        bestGap = nextSpecial - p;
                        System.out.format("%d - %d = %d\n", nextSpecial, p, bestGap);
                    }

                    p = nextSpecial;
                    nextSpecial = specials[++nextSpecialIdx];
                }

                if (isGood(q)) {
                    if (q - p > bestGap) {
                        bestGap = q - p;
                        System.out.format("%d - %d = %d\n", q, p, bestGap);
                    }

                    p = q;
                }
            }

        }
    }

    static long[] genSpecials() {
        // 2^a 3^b + 1 or 2^a 5^b + 1
        List<Long> tmp = new LinkedList<Long>();
        for (long threes = 3; threes <= 4052555153018976267L; threes *= 3) {
            for (long t = threes; t > 0; t <<= 1) tmp.add(t + 1);
        }
        for (long fives = 5; fives <= 7450580596923828125L; fives *= 5) {
            for (long f = fives; f > 0; f <<= 1) tmp.add(f + 1);
        }

        // Filter down to primes
        Iterator<Long> it = tmp.iterator();
        while (it.hasNext()) {
            long next = it.next();
            if (next < 60 || next > 341550071728321L || !isPrime(next)) it.remove();
        }

        Collections.sort(tmp);
        long[] specials = new long[tmp.size()];
        for (int i = 0; i < tmp.size(); i++) specials[i] = tmp.get(i);

        return specials;
    }

    private static boolean isGood(long p) {
        long d = p - 1;
        while ((d & 1) == 0) d >>= 1;

        if (d == 1) return false;

        // Is d a prime power?
        if (d % 3 == 0 || d % 5 == 0) {
            // Because of the way the filters before this one work, nothing should reach here.
            throw new RuntimeException("Should be unreachable");
        }

        // TODO Is it preferable to reuse the Atkin-Bernstein code, caching pages which correspond
        // to the possible power candidates?
        if (isPrime(d)) return true;
        for (int a = (d % 60 == 1 || d % 60 == 49) ? 2 : 3; (1L << a) < d; a++) {
            long r = (long)(0.5 + Math.pow(d, 1. / a));
            if (d == (long)(0.5 + Math.pow(r, a)) && isPrime(r)) return true;
        }

        return false;
    }

    /*---------------------------------------------------
               Deterministic Miller-Rabin
    ---------------------------------------------------*/
    public static boolean isPrime(int x) {
        // See isPrime(long). We pick bases which are known to work for the entire range of int.
        // Special case for the bases.
        if (x == 2 || x == 7 || x == 61) return true;

        int d = x - 1;
        int s = 0;
        while ((d & 1) == 0) { s++; d >>= 1; } // TODO Can be optimised

        if (!isSPRP(2, d, s, x)) return false;
        if (!isSPRP(7, d, s, x)) return false;
        if (!isSPRP(61, d, s, x)) return false;
        return true;
    }

    private static boolean isSPRP(int b, int d, int s, int x /* == d << s */) {
        int l = modPow(b, d, x);
        if (l == 1 || l == x - 1) return true;
        for (int r = 1; r < s; r++) {
            l = modPow(l, 2, x);
            if (l == x - 1) return true;
            if (l == 1) return false;
        }

        return false;
    }

    public static int modPow(int a, int b, int c) {
        int accum = 1;
        while (b > 0) {
            if ((b & 1) == 1) accum = (int)(accum * (long)a % c);
            a = (int)(a * (long)a % c);
            b >>= 1;
        }
        return accum;
    }

    public static boolean isPrime(long x) {
        if (x < Integer.MAX_VALUE) return isPrime((int)x);

        long d = x - 1;
        int s = 0;
        while ((d & 1) == 0) { s++; d >>= 1; } // TODO Can be optimised

        // If b^d == 1 (mod x) or (b^d)^(2^r) == -1 (mod x) for some r < s then we pass for base b.
        // We select bases according to Jaeschke, Gerhard (1993), "On strong pseudoprimes to several bases", Mathematics of Computation 61 (204): 915–926, doi:10.2307/2153262
        // TODO Would it be better to use a set of 5 bases from http://miller-rabin.appspot.com/ ?
        if (!isSPRP(2, d, s, x)) return false;
        if (!isSPRP(3, d, s, x)) return false;
        if (!isSPRP(5, d, s, x)) return false;
        if (!isSPRP(7, d, s, x)) return false;
        if (x < 3215031751L) return true;
        if (!isSPRP(11, d, s, x)) return false;
        if (x < 2152302898747L) return true;
        if (!isSPRP(13, d, s, x)) return false;
        if (x < 3474749660383L) return true;
        if (!isSPRP(17, d, s, x)) return false;
        if (x < 341550071728321L) return true;

        throw new IllegalArgumentException("Overflow");
    }

    private static boolean isSPRP(long b, long d, int s, long x /* == d << s */) {
        if (b * (double)x > Long.MAX_VALUE) throw new IllegalArgumentException("Overflow"); // TODO Work out more precise page bounds

        long l = modPow(b, d, x);
        if (l == 1 || l == x - 1) return true;
        for (int r = 1; r < s; r++) {
            l = modPow(l, 2, x);
            if (l == x - 1) return true;
            if (l == 1) return false;
        }

        return false;
    }

    /**
     * Computes a^b (mod c). We assume c &lt; 2^62.
     */
    public static long modPow(long a, long b, long c) {
        long accum = 1;
        while (b > 0) {
            if ((b & 1) == 1) accum = prodMod(accum, a, c);
            a = prodMod(a, a, c);
            b >>= 1;
        }
        return accum;
    }

    /**
     * Computes a*b (mod c). We assume c &lt; 2^62.
     */
    private static long prodMod(long a, long b, long c) {
        // The naive product would require 128-bit integers.

        // Consider a = (A << 32) + B, b = (C << 31) + D. Different shifts chosen deliberately.
        // Then ab = (AC << 63) + (AD << 32) + (BC << 31) + BD with intermediate values remaining in 63 bits.
        long AC = (a >> 32) * (b >> 31) % c;
        long AD = (a >> 32) * (b & ((1L << 31) - 1)) % c;
        long BC = (a & ((1L << 32) - 1)) * (b >> 31) % c;
        long BD = (a & ((1L << 32) - 1)) * (b & ((1L << 31) - 1)) % c;

        long t = AC;
        for (int i = 0; i < 31; i++) {
            t = (t + t) % c;
        }
        // t = (AC << 31)
        t = (t + AD) % c;
        t = (t + t) % c;
        t = (t + BC) % c;
        // t = (AC << 32) + (AD << 1) + BC
        for (int i = 0; i < 31; i++) {
            t = (t + t) % c;
        }
        // t = (AC << 63) + (AD << 32) + (BC << 31)
        return (t + BD) % c;
    }

    /*---------------------------------------------------
                      Atkin-Bernstein
    ---------------------------------------------------*/
    // Page size.
    private static final int B = 1001 << 6;
    // Wheel modulus for sharding between binary quadratic forms.
    private static final int M = 60;

    // Squares of primes 5 < q < 240
    private static final int[] qqtab = new int[] {
        49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809,
        3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881,
        12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761,
        36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289, 57121
    };
    // If a_i == q^{-2} (mod 60) is the reciprocal of qq[i], qq60tab[i] = qq[i] + (1 - a_i * qq[i]) / 60
    private static int[] qq60tab = new int[] {
        9, 119, 31, 53, 355, 97, 827, 945, 251, 1653, 339, 405, 515,
        3423, 3659, 823, 4957, 977, 6137, 1263, 7789, 1725, 10031, 1945, 2099, 11683,
        2341, 2957, 16875, 3441, 18999, 21831, 22421, 4519, 4871, 5113, 5487, 31507, 32215,
        35873, 6829, 7115, 38941, 43779, 9117, 9447, 51567, 9953, 56169
    };

    /**
     * Produces a set of parameters for traceElliptic to find solutions to ax^2 + cy^2 == d (mod M).
     * @param d The target residue.
     * @param a Binary quadratic form parameter.
     * @param c Binary quadratic form parameter.
     */
    private static List<int[]> initElliptic(final int[] invTotients, final int d, final int a, final int c) {
        List<int[]> rv = new ArrayList<int[]>();

        // The basic idea is that we maintain an invariant of the form
        //     M k = a x^2 + c y^2 - d
        // Therefore we increment x in steps F such that
        //     a((x + F)^2 - x^2) == 0 (mod M)
        // and similarly for y in steps G.
        int F = computeIncrement(a, M), G = computeIncrement(c, M);
        for (int f = 1; f <= F; f++) {
            for (int g = 1; g <= G; g++) {
                if ((a*f*f + c*g*g - d) % M == 0) {
                    rv.add(new int[] { invTotients[d], (2*f + F)*a*F/M, (2*g + G)*c*G/M, (a*f*f + c*g*g - d)/M, 2*a*F*F/M, 2*c*G*G/M });
                }
            }
        }

        return rv;
    }

    private static int computeIncrement(int a, int M) {
        // Find smallest F such that M | 2aF and M | aF^2
        int l = M / gcd(M, 2 * a);
        for (int F = l; true; F += l) {
            if (a*F*F % M == 0) return F;
        }
    }

    public static int gcd(int a, int b) {
        while (b != 0) {
            int t = b;
            b = a % b;
            a = t;
        }

        return a;
    }

    // NB This is generalised somewhat from primegen's implementation.
    private static void traceElliptic(final long[] buf, int x, int y, long start, final int cF2, final int cG2, final int[] Lmodqq, final int d) {
        // Bring the annular segment into the range of ints.
        start += 1000000000;
        while (start < 0) {
            start += x;
            x += cF2;
        }
        start -= 1000000000;
        int i = (int)start;

        while (i < B) {
            i += x;
            x += cF2;
        }

        while (true) {
            x -= cF2;
            if (x <= cF2 >> 1) {
                // It makes no sense that doing this in here should perform well, but empirically it does much better than
                // only eliminating the squares once.
                squarefreeTiny(buf, Lmodqq, d);
                return;
            }
            i -= x;

            while (i < 0) {
                i += y;
                y += cG2;
            }

            int i0 = i, y0 = y;
            while (i < B) {
                buf[i >> 6] ^= 1L << i;
                i += y;
                y += cG2;
            }
            i = i0;
            y = y0;
        }
    }

    // This only handles 3x^2 - y^2, and is closer to a direct port of primegen.
    private static void traceHyperbolic(final long[] a, int x, int y, long start, final int[] Lmodqq, final int d) {
        x += 5;
        y += 15;

        // Bring the segment into the range of ints.
        start += 1000000000;
        while (start < 0) {
            start += x;
            x += 10;
        }
        start -= 1000000000;
        int i = (int)start;

        while (i < 0) {
            i += x;
            x += 10;
        }

        while (true) {
            x += 10;
            while (i >= B) {
                if (x <= y) {
                    squarefreeTiny(a, Lmodqq, d);
                    return;
                }
                i -= y;
                y += 30;
            }

            int i0 = i, y0 = y;
            while (i >= 0 && y < x) {
                a[i >> 6] ^= 1L << i;
                i -= y;
                y += 30;
            }
            i = i0 + x - 10;
            y = y0;
        }
    }

    private static void squarefreeTiny(final long[] a, final int[] Lmodqq, final int d) {
        for (int j = 0; j < qqtab.length; ++j) {
            int qq = qqtab[j];
            int k = qq - 1 - ((Lmodqq[j] + qq60tab[j] * d - 1) % qq);
            while (k < B) {
                a[k >> 6] |= 1L << k;
                k += qq;
            }
        }
    }

    private static void squarefreeMid(long[][] buf, int[] invTotients, final long base, int q, int dqq, int di) {
        int qq = q * q;
        q = M * q + (M * M / 4);

        while (qq < M * B) {
            int i = qq - (int)(base % qq);
            if ((i & 1) == 0) i += qq;

            if (i < M * B) {
                int qqhigh = ((qq / M) << 1) + dqq;
                int ilow = i % M;
                int ihigh = i / M;
                while (ihigh < B) {
                    int n = invTotients[ilow];
                    if (n >= 0) buf[n][ihigh >> 6] |= 1L << ihigh;

                    ilow += di;
                    ihigh += qqhigh;
                    if (ilow >= M) {
                        ilow -= M;
                        ihigh += 1;
                    }
                }
            }

            qq += q;
            q += M * M / 2;
        }

        squarefreebig(buf, invTotients, base, q, qq);
    }

    private static void squarefreebig(long[][] buf, int[] invTotients, final long base, int q, long qq) {
        long bound = base + M * B;
        while (qq < bound) {
            long i = qq - (base % qq);
            if ((i & 1) == 0) i += qq;

            if (i < M * B) {
                int pos = (int)i;
                int n = invTotients[pos % M];
                if (n >= 0) {
                    int ihigh = pos / M;
                    buf[n][ihigh >> 6] |= 1L << ihigh;
                }
            }

            qq += q;
            q += M * M / 2;
        }
    }

    // The relevant totients of M - those which only have one forced prime factor.
    static final int[] totients = new int[] { 17, 23, 29, 47, 53, 59 };
    private static final int[] invTotients;
    // Parameters for tracing the hyperbolic BQF used for 59+60Z.
    private static final int[][] hyperbolic = new int[][] {
        {5, 1, 2, -1}, {5, 1, 8, -2}, {5, 1, 22, -9}, {5, 1, 28, -14}, {5, 4, 7, -1}, {5, 4, 13, -3}, {5, 4, 17, -5}, {5, 4, 23, -9},
        {5, 5, 4, 0}, {5, 5, 14, -3}, {5, 5, 16, -4}, {5, 5, 26, -11}, {5, 6, 7, 0}, {5, 6, 13, -2}, {5, 6, 17, -4}, {5, 6, 23, -8},
        {5, 9, 2, 3}, {5, 9, 8, 2}, {5, 9, 22, -5}, {5, 9, 28, -10}, {5, 10, 1, 4}, {5, 10, 11, 2}, {5, 10, 19, -2}, {5, 10, 29, -10}
    };

    // Parameters for tracing the elliptic BQFs used for all totients except 11 and 59.
    private static final int[][] elliptic;
    static {
        invTotients = new int[M];
        Arrays.fill(invTotients, -1);
        for (int i = 0; i < totients.length; i++) invTotients[totients[i]] = i;

        // Calculate the parameters for tracing the elliptic BQFs from a table of the BQF used for each totient.
        // E.g. for 17+60Z we use 5x^2 + 3y^2.
        int[][] bqfs = new int[][] {
            {17, 5, 3}, {23, 5, 3}, {29, 4, 1}, {47, 5, 3}, {53, 5, 3}
        };
        List<int[]> parmSets = new ArrayList<int[]>();
        for (int[] bqf : bqfs) parmSets.addAll(initElliptic(invTotients, bqf[0], bqf[1], bqf[2]));
        elliptic = parmSets.toArray(new int[0][]);
    }
}

Speichern als PPCG65876.java, Kompilieren als javac PPCG65876.javaund Ausführen als java -Xmx1G PPCG65876.

Peter Taylor
quelle
Ich dachte, du würdest wahrscheinlich etwas tun, das weit über meinem Kopf liegt. ;) Lembiks Regeln schließen jedoch Bibliotheksfunktionen für Primetests aus, so dass ich denke, dass Sie Ihre eigenen verwenden müssen.
Reto Koradi
@RetoKoradi, ja, beim erneuten Lesen stimme ich zu, dass Methoden in " Sie können probabilistische Primärtestmethoden verwenden " eher Techniken als Funktionen bedeuten. Durch das Ersetzen wird auch eine beachtliche Geschwindigkeitssteigerung erzielt.
Peter Taylor
Danke dafür! Überraschenderweise kommt es auf meinem PC nur auf 3486. Auf der Kommandozeile brauche ich anscheinend auch -Xmx1G nicht.
Erhalten Sie viel höhere Werte, wenn Sie es länger laufen lassen? Ich habe meine gerade nach ungefähr 40 Stunden gestoppt. Es stellte 6216 als die größte Differenz (mit Spitzenwerten um 16 Milliarden) zwischen 12 und 24 Stunden fest und danach nichts mehr, bevor ich damit aufhörte. Die neuen "Highscores" werden mit der Zeit definitiv immer seltener.
Reto Koradi
1
@RetoKoradi, ich habe es nicht viel länger als 15 Minuten laufen lassen. Ich arbeite an Ansätzen, um den isGoodScheck zu beschleunigen .
Peter Taylor
10

C ++, 2754 (alle Werte, Brute-Force-Primalitätstest)

Das ist rohe Gewalt, aber es ist ein Anfang, bevor unsere ansässigen Mathematiker mit etwas Effizienterem arbeiten können.

Ich kann bei Bedarf weitere Erklärungen hinzufügen, aber dies ist wahrscheinlich aus dem Code sehr offensichtlich. Da if peine andere Primzahl als 2 ist, wissen wir, dass sie gerade p - 1ist, und einer der beiden Faktoren ist immer 2. Also zählen wir die Primzahlen auf, reduzieren sie p - 1um alle Faktoren 2 und überprüfen, ob der verbleibende Wert entweder eine Primzahl oder eine solche ist Alle seine Faktoren sind die gleichen Primzahlen.

Code:

#include <stdint.h>
#include <vector>
#include <iostream>

int main()
{
    std::vector<uint64_t> primes;
    uint64_t prevGoodVal = 0;
    uint64_t maxDiff = 0;

    for (uint64_t val = 3; ; val += 2)
    {
        bool isPrime = true;
        std::vector<uint64_t>::const_iterator itFact = primes.begin();
        while (itFact != primes.end())
        {
            uint64_t fact = *itFact;
            if (fact * fact > val)
            {
                break;
            }

            if (!(val % fact))
            {
                isPrime = false;
                break;
            }

            ++itFact;
        }

        if (!isPrime)
        {
            continue;
        }

        primes.push_back(val);

        uint64_t rem = val;
        --rem;
        while (!(rem & 1))
        {
            rem >>= 1;
        }

        if (rem == 1)
        {
            continue;
        }

        bool isGood = true;
        itFact = primes.begin();
        while (itFact != primes.end())
        {
            uint64_t fact = *itFact;
            if (fact * fact > rem)
            {
                break;
            }

            if (!(rem % fact))
            {
                while (rem > fact)
                {
                    rem /= fact;
                    if (rem % fact)
                    {
                        break;
                    }
                }

                isGood = (rem == fact);
                break;
            }

            ++itFact;
        }

        if (isGood)
        {
            if (prevGoodVal)
            {
                uint64_t diff = val - prevGoodVal;
                if (diff > maxDiff)
                {
                    maxDiff = diff;
                    std::cout << maxDiff
                              << " (" << val << " - " << prevGoodVal << ")"
                              << std::endl;
                }
            }

            prevGoodVal = val;
        }
    }

    return 0;
}

Das Programm gibt die Differenz sowie die entsprechenden zwei guten Primzahlen jedes Mal aus, wenn eine neue maximale Differenz gefunden wird. Beispielausgabe des Testlaufs auf meinem Computer, bei dem der gemeldete Wert von 2754 nach ca. 1:20 Minuten gefunden wird:

4 (11 - 7)
6 (19 - 13)
8 (37 - 29)
14 (73 - 59)
24 (137 - 113)
30 (227 - 197)
32 (433 - 401)
48 (557 - 509)
50 (769 - 719)
54 (1283 - 1229)
60 (1697 - 1637)
90 (1823 - 1733)
108 (2417 - 2309)
120 (3329 - 3209)
126 (4673 - 4547)
132 (5639 - 5507)
186 (7433 - 7247)
222 (8369 - 8147)
258 (16487 - 16229)
270 (32507 - 32237)
294 (34157 - 33863)
306 (35879 - 35573)
324 (59393 - 59069)
546 (60293 - 59747)
570 (145823 - 145253)
588 (181157 - 180569)
756 (222059 - 221303)
780 (282617 - 281837)
930 (509513 - 508583)
1044 (1046807 - 1045763)
1050 (1713599 - 1712549)
1080 (1949639 - 1948559)
1140 (2338823 - 2337683)
1596 (3800999 - 3799403)
1686 (6249743 - 6248057)
1932 (12464909 - 12462977)
2040 (30291749 - 30289709)
2160 (31641773 - 31639613)
2190 (34808447 - 34806257)
2610 (78199097 - 78196487)
2640 (105072497 - 105069857)
2754 (114949007 - 114946253)
^C

real    1m20.233s
user    1m20.153s
sys 0m0.048s
Reto Koradi
quelle
7

C ++, 14226 (nur hohe Werte, Miller-Rabin-Test)

Dies separat zu posten, da es sich völlig von meiner ursprünglichen Lösung unterscheidet und ich einen Beitrag, der eine Reihe von positiven Stimmen erhalten hatte, nicht vollständig ersetzen wollte.

Vielen Dank an @primo für den Hinweis auf ein Problem mit der Originalversion. Beim Primzahlentest gab es einen Überlauf für große Zahlen.

Dies nutzt einige Erkenntnisse aus der Entwicklung anderer Lösungen. Die wichtigsten Beobachtungen sind:

  • Da die Ergebnisse deutlich zeigen, dass die Lücken größer werden, wenn die Primzahlen selbst größer werden, macht es keinen Sinn, sich mit kleinen Primzahlen zu beschäftigen. Das Erkunden großer Primzahlen ist viel effektiver.
  • Für Primzahlen dieser Größe ist eine probabilistische Primzahlprüfung erforderlich.

Auf dieser Grundlage ist die hier verwendete Methode ziemlich einfach:

  • Für die Prüfung der Primalität wird der Miller-Rabin-Test verwendet. Die Implementierung basiert auf dem Pseudocode auf der Wikpedia-Seite . Mit den verwendeten Basen liefert es korrekte Werte bis zu 3825123056546413051 (siehe OEIS A014233 ), was für den hier verwendeten Wertebereich ausreichend ist.
  • Um festzustellen, ob Primzahlen gute Primzahlen sind, werden die Potenzen von 2 abgezogen. Das Faktorisieren des verbleibenden Wertes wäre sehr teuer, aber nicht notwendig. Stattdessen berechne ich die viel weniger möglichen Wurzeln mit Doppelmathematik und überprüfe, ob eine von ihnen eine Ganzzahl ergibt, die tatsächlich die richtige Wurzel ist.
  • Math verwendet hauptsächlich 64-Bit-Werte ohne Vorzeichen, wobei für einige temporäre Werte im Primalitätstest 128-Bit-Werte ohne Vorzeichen erforderlich sind.
  • Da ich für die Wurzeln double math verwende und ein double genau ganze Zahlen von höchstens 53 Bit darstellen kann, beträgt die maximale Größe, die mit diesem Code sicher verarbeitet werden kann, 54 Bit (die in double umgewandelte Zahl ist höchstens halb so groß wie die prime).
  • Da 54 Bit die maximale Größe für die Nummer war, für die ich mir sicher war, beginne ich mit einer Nummer, die etwas kleiner ist als die maximale 54-Bit-Nummer. Der Code meldet größere Lücken für noch größere Startwerte, und sie sind wahrscheinlich korrekt, aber ich kann nicht so sicher sein.

Ergebnisse:

1266 (16888498602640739 - 16888498602639473)
1470 (16888498602645563 - 16888498602644093)
2772 (16888498602651629 - 16888498602648857)
2862 (16888498602655829 - 16888498602652967)
3120 (16888498602675053 - 16888498602671933)
3756 (16888498602685769 - 16888498602682013)
4374 (16888498602696257 - 16888498602691883)
5220 (16888498602745493 - 16888498602740273)
5382 (16888498603424039 - 16888498603418657)
5592 (16888498603511279 - 16888498603505687)
5940 (16888498603720697 - 16888498603714757)
6204 (16888498605020837 - 16888498605014633)
6594 (16888498605999017 - 16888498605992423)
14226 (16888498608108539 - 16888498608094313)
^C

real    0m26.335s
user    0m26.312s
sys 0m0.008s

Code:

#include <stdint.h>
#include <cmath>
#include <iostream>

uint64_t intRoot(uint64_t a, int p)
{
    double e = 1.0 / static_cast<double>(p);
    double dRoot = pow(a, e);

    return static_cast<uint64_t>(dRoot + 0.5);
}

uint64_t intPow(uint64_t a, int e)
{
    uint64_t r = 1;

    while (e)
    {
        if (e & 1)
        {
            r *= a;
        }

        e >>= 1;
        a *= a;
    }

    return r;
}

uint64_t modPow(uint64_t a, uint64_t e, uint64_t m)
{
    uint64_t r = 1;
    a %= m;

    while (e)
    {
        if (e & 1)
        {
            __uint128_t t = r;
            t *= a;
            t %= m;
            r = t;
        }

        e >>= 1;
        __uint128_t t = a;
        t *= a;
        t %= m;
        a = t;
    }

    return r;
}

bool isPrime(uint64_t n)
{
    const uint64_t a[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};

    if (n < 2)
    {
        return false;
    }

    for (int k = 0; k < 9; ++k)
    {
        if (n == a[k])
        {
            return true;
        }

        if (n % a[k] == 0)
        {
            return false;
        }
    }

    int r = __builtin_ctzll(n - 1);
    uint64_t d = (n - 1) >> r;

    for (int k = 0; k < 9; ++k)
    {
        uint64_t x = modPow(a[k], d, n);

        if (x == 1 || x == n - 1)
        {
            continue;
        }

        bool comp = true;
        for (int i = 0; i < r - 1; ++i)
        {
            x = modPow(x, 2, n);
            if (x == 1)
            {
                return false;
            }
            if (x == n - 1)
            {
                comp = false;
                break;
            }
        }

        if (comp)
        {
            return false;
        }
    }

    return true;
}

int main()
{
    uint64_t prevGoodVal = 0;
    uint64_t maxDiff = 0;

    for (uint64_t val = (1ull << 54) - (1ull << 50) + 1; ; val += 2)
    {
        if (isPrime(val))
        {
            uint64_t d = static_cast<double>((val - 1) >> __builtin_ctzll(val - 1));
            bool isGood = false;

            if (isPrime(d))
            {
                isGood = true;
            }
            else
            {
                for (int e = 2; ; ++e)
                {
                    uint64_t r = intRoot(d, e);
                    if (r < 3)
                    {
                        break;
                    }

                    if (intPow(r, e) == d && isPrime(r))
                    {
                        isGood = true;
                        break;
                    }
                }
            }

            if (isGood)
            {
                if (prevGoodVal)
                {
                    uint64_t diff = val - prevGoodVal;
                    if (diff > maxDiff)
                    {
                        maxDiff = diff;
                        std::cout << maxDiff
                                  << " (" << val << " - " << prevGoodVal << ")"
                                  << std::endl;
                    }
                }

                prevGoodVal = val;
            }
        }
    }

    return 0;
}
Reto Koradi
quelle
@primo Sollte jetzt korrekt sein. Es gab einen Überlauf, bei dem ich zwei 64-Bit-Zahlen im Primalitätstest multiplizierte, was dazu führte, dass für einige große Primzahlen "zusammengesetzt" gemeldet wurde. Vielen Dank für den Hinweis. Lassen Sie mich wissen, wenn Sie immer noch ein Problem sehen.
Reto Koradi
Das ist gut so. Das Rennen hat begonnen? ;)
Primo
@primo Ich hatte einige wesentlich größere Werte, aber sie verwendeten Primzahlen, die nicht vollständig durch ein Doppel dargestellt werden können. Ich denke, es würde immer noch eine präzise Annäherung der Wurzel geben, um korrekte Ergebnisse zu erzielen. Oder ich könnte einen Root-Finding-Algorithmus implementieren, der keine Doubles verwendet. Aber ich werde nicht mehr Zeit damit verbringen können, bevor das Kopfgeld abläuft ...
Reto Koradi
Ihre Antwort erreicht auch ihr Maximum in 4 Sekunden! (Genau wie bei primo.)
6

PyPy-2.4.0

Python-2

Die xDatei s ...

Folge: "Sieh mal Mama! Keine einzige Division!"

;-)

M = g = 0
B = L = {}
n = 2
while 1:
        if n in L:
                B = P = L[n]
                del L[n]
        else:
                if len(B) == 2:
                        if g:
                                m = n - g
                                if M < m:
                                        M = m
                                        print n, g, m
                        g = n
                P = [n]
        for p in P:
                npp = n + p
                if npp in L:
                        if p not in L[npp]:
                                L[npp] += [p]
                else:
                        L[npp] = [p]
        n += 1

Ich habe es auf Debian8 mit PyPy-2.4.0 getestet und Python2 hat wie folgt begonnen:

timeout 2m pypy -O x
timeout 2m python2 -O x

Wenn wirklich viel RAM vorhanden ist, kann die del L[n]Zeile gelöscht werden.


Der grundlegende Primzahlengenerator lautet wie folgt:

L = {}
n = 2

while 1:

        if n in L:
                P = L[n]
                del L[n]
        else:
                print n
                P = [n]

        for p in P:
                npp = n + p
                if npp in L:
                        if p not in L[npp]:
                                L[npp] += [p]
                else:
                        L[npp] = [p]

        n += 1

Es macht im Grunde genau das, was das Sieb des Eratosthenes tut, aber in einer anderen Reihenfolge.

List ein Wörterbuch, kann aber als Liste (Band) von Nummernlisten angesehen werden. Nicht vorhandene Zellen L[n]werden so interpretiert, dass nbisher keine Primteiler bekannt sind.

Die whileSchleife führt bei jeder Runde eine Prim- oder Nicht-Prim-Entscheidung durch L[n].

  • Wenn L[n]existiert (dasselbe wie n in L), P = L[n]ist eine Liste verschiedener Primteiler von n. Ist nalso keine Primzahl.

  • Falls L[n]nicht vorhanden, wurde kein Hauptteiler gefunden. Also nmuss der erste sein, P = [n]wenn man der bekannte Teiler ist.

Jetzt Pist die Liste der bekannten Primteiler für beide Fälle.

Die for p in PSchleife bewegt jeden Eintrag Pvorwärts um den Abstand seines Wertes auf dem Zahlenband.

So springen die Divisoren auf das Band und aus diesem Grund müssen diese Sprungzahlen Primzahlen sein. Neue Zahlen werden erst durch die elseobige Entscheidung auf dem Band gespeichert, und dies sind Zahlen ohne andere bekannte Teiler als sie selbst. Nonprimes kommen nie in diese Listen L[n].

Die Primzahlen in der Liste sind alle verschieden, da jede Zahl nnur einmal betrachtet und nur als Divisor hinzugefügt wird (wenn keine Primzahl :) 0oder (wenn Primzahl :)) 1. Bekannte Hauptteiler bewegen sich nur vorwärts, werden jedoch niemals dupliziert. Hält also L[n]immer eindeutige Primteiler oder ist leer.


Zurück zum oberen Programm für die guten Primzahlenlücken:

    if n in L:
            B = P = L[n]

... behält die Primteiler von nin, Bwenn bekannt nist, dass sie nicht prim sind.

Wenn nals Primzahl erkannt wird, Benthält die Liste der Primteiler des vorherigen Schleifendurchlaufs Folgendes n-1:

    else:
            if len(B) == 2:

... so len(B) == 2Mittel n - 1haben zwei verschiedene Primfaktoren.

                        if g:
                                m = n - g
                                if M < m:
                                        M = m
                                        print n, g, m
                        g = n

gErinnert sich nur an die zuletzt gesehene gute Primzahl vor der neuen, Mist die Länge der vorherigen maximalen guten Primzahllücke und mdie Länge der neu gefundenen Lücke.


Glückliches Ende.


quelle
Gute Lösung. Für mich ist das 2640 in ungefähr 117s.
Primo
1
Könnten Sie bitte eine kleine Erklärung hinzufügen.
1
@Lembik: Fertig ...
4

C #, wahrscheinlich 1932

Ich habe herausgefunden, dass je schneller Ihr Algorithmus zum Auffinden von Primzahlen ist, desto besser ist Ihre Punktzahl. Ich bin mir auch ziemlich sicher, dass mein Algorithmus nicht die optimalste Methode für die Primärsuche ist.

using System;
using System.Collections.Generic;

namespace GoodPrimes
{
    class Program
    {
        static void Main(string[] args)
        {
            int[] list_of_primes = new int[168]{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997};
            bool is_last_prime = false;
            int last_prime = 0;
            int max_value = 0;
            int old_max_value = 1000000;
            int old_min_value = 3;
            HashSet<int> primeSet = new HashSet<int>();
            primeSet.Add(2);
            int X = 0;
            Console.WriteLine("Initialize primes until " + old_max_value);
            for (int i = old_min_value; i < old_max_value; i++)
            {
                if (IsPrime(i, primeSet))
                    primeSet.Add(i);
            }
            old_min_value = old_max_value;
            for (int i = 3; ; i += 2)
            {
                if (i > old_max_value)
                {
                    old_max_value += 500000;
                    Console.WriteLine("Initialize primes until " + old_max_value);
                    for (int j = old_min_value; j < old_max_value; j++)
                    {
                        for(int k = 0; k < list_of_primes.Length; k++)
                            if(j % list_of_primes[k] == 0 && j > list_of_primes[k])
                                continue;
                        if (IsPrime(j, primeSet))
                            primeSet.Add(j);
                    }
                    old_min_value = old_max_value;
                }
                if (primeSet.Contains(i))
                {
                    is_last_prime = false;
                    X = (i - 1) / 2;
                    while (X % 2 == 0)
                        X = X / 2;
                    if (IsPrime(X, primeSet))
                        is_last_prime = true;
                    for (int j = 3; j < i; j++)
                    {
                        if (j % 2 == 0 && j > 2)
                            continue;
                        if (j % 3 == 0 && j > 3)
                            continue;
                        if (j % 5 == 0 && j > 5)
                            continue;
                        if (j % 7 == 0 && j > 7)
                            continue;
                        if (j % 11 == 0 && j > 11)
                            continue;
                        if (j % 13 == 0 && j > 13)
                            continue;
                        if (j % 17 == 0 && j > 17)
                            continue;

                        if (X % j == 0 || is_last_prime)
                        {
                            while (X % j == 0)
                                X = X / j;
                            if ((primeSet.Contains(j) && X == 1) || is_last_prime)
                            {
                                while (X % j == 0)
                                    X = X / j;
                                if (X == 1 || is_last_prime)
                                {
                                    if (i - last_prime > max_value)
                                    {
                                        max_value = i - last_prime;
                                        Console.WriteLine("New max value: " + max_value.ToString() + " (" + i.ToString() + "-" + last_prime.ToString() + ")");
                                    }
                                    last_prime = i;
                                }
                            }
                            break;
                        }
                    }
                }
            }
            Console.ReadLine();
        }

        private static bool IsPrime(int i, HashSet<int> j)
        {
            if (i == 2)
                return true;
            for (int m = 2; m < Math.Sqrt(System.Convert.ToDouble(i)) + 1; m++)
            {
                if (j.Contains(m))
                {
                    if (m % 2 == 0 && m > 2)
                        continue;
                    if (m % 3 == 0 && m > 3)
                        continue;
                    if (m % 5 == 0 && m > 5)
                        continue;
                    if (m % 7 == 0 && m > 7)
                        continue;
                    if (m % 11 == 0 && m > 11)
                        continue;
                    if (m % 13 == 0 && m > 13)
                        continue;
                    if (m % 17 == 0 && m > 17)
                        continue;
                    if (i % m == 0)
                        return false;
                }
            }
            return true;
        }
    }
}
Adnan
quelle
4

Python 3, 546

... in zwei Minuten auf meiner Maschine, die meiner Meinung nach bedeutend weniger leistungsstark ist als Ihre.

def getPrimes_parallelized(): #uses sieve of Sundaram
        yield 2
        yield 3
        P = [[4,1]]
        i = 2
        while 1:
            if P[0][0] <= i:
                while P[0][0] <= i:
                    P[0][0] += 2*P[0][1]+1
                    P.sort()
            elif P[0][0] > i:
                yield 2*i+1
                P.append([2*(i+i*i), i])
                P.sort()
            i += 1

def goodPrimes(x):
    P = getPrimes_parallelized()
    primes = []

    for p in P:
        primes.append(p)
        n = p-1
        factors = []

        for p2 in primes:
            if n%p2 == 0:
                factors.append(p2)
                while n%p2 == 0: n //= p2

            if len(factors) > x: break

        if len(factors) <= x: yield p

maxdiff = 0
GP = goodPrimes(2)
p1 = next(GP)
gp = next(GP)
gps = [(p1,gp)]

while 1:
    if gp-p1 > maxdiff:
        maxdiff = gp-p1
        print("p: %d, q: %d, |q-p|: %d" % (p1,gp,gp-p1))
    p1,gp = gp,next(GP)

Ich könnte dies wahrscheinlich effizienter machen, indem ich für den x=2Fall optimiere , aber eh. Gut genug. : P

El'endia Starman
quelle
Dein Code wird nur p: 2, q: 3, |q-p|: 1für mich ausgegeben.
1
@Lembik: Ah, hoppla. Ich habe dies von der Version, in der es Plotten gab, reduziert und eine wichtige Zeile weggelassen. Fest.
El'endia Starman
4

Gehen Sie wahrscheinlich 756

Zum Schämen! Ich bin so ein Anfänger, dass ich nur naiv alten Code wiederverwendet habe und erwartet habe, dass er funktioniert und schnell ist! Wenn ich dies neu implementieren und es tatsächlich um gute Primzahlen herum aufbauen würde, wäre es so viel schneller, aber leider lerne ich. (Ich werde wahrscheinlich morgen mit einer vollständig neu erstellten Lösung antworten, die speziell für diesen Zweck entwickelt wurde.)

package main

import "fmt"

func mkPrime(ch chan<- int) {
    for i := 2; ; i++ {
        ch <- i // Send 'i' to channel 'ch'.
    }
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filterPrm(in <-chan int, out chan<- int, prime int) {
    for {
        i := <-in // Receive value from 'in'.
        if i%prime != 0 {
            out <- i // Send 'i' to 'out'.
        }
    }
}

func mkPFac(max int, ch chan<- int) {
    ch <- 2
    for i := 3; i <= max; i += 2 {
        ch <- i
    }
    ch <- -1 // signal that the limit is reached
}

// Copy the values from channel 'in' to channel 'out',
// removing those divisible by 'prime'.
func filterPFac(in <-chan int, out chan<- int, prime int) {
    for i := <-in; i != -1; i = <-in {
        if i%prime != 0 {
            out <- i
        }
    }
    out <- -1
}

func calcPFactors(numToFac int) []int {
    rv := []int{}
    ch := make(chan int)
    go mkPFac(numToFac, ch)
    for prime := <-ch; (prime != -1) && (numToFac > 1); prime = <-ch {
        for numToFac%prime == 0 {
            numToFac = numToFac / prime
            rv = append(rv, prime)
        }
        ch1 := make(chan int)
        go filterPFac(ch, ch1, prime)
        ch = ch1
    }
    return rv
}

func rmDup(list []int) []int {
    var nlist []int
    for _, e := range list {
        if !isIn(e, nlist) {
            nlist = append(nlist, e)
        }
    }
    return nlist
}

func isIn(a int, list []int) bool {
    for _, b := range list {
        if b == a {
            return true
        }
    }
    return false
}

// The prime sieve: Daisy-chain Filter processes.
func main() {
    var diff, prev, high int
    ch := make(chan int) // Create a new channel.
    go mkPrime(ch)       // Launch Generate goroutine.
    for i := 0; i < 10000000000; i++ {
        prime := <-ch
        list := rmDup(calcPFactors(prime - 1))
        if len(list) == 2 {
            //fmt.Println(list, prime)
            diff = prime - prev
            //fmt.Println(diff)
            prev = prime
            if diff > high {
                high = diff
                fmt.Println(high)
            }
        }
        ch1 := make(chan int)
        go filterPrm(ch, ch1, prime)
        ch = ch1
    }
}

Verwendet offensichtlich Parallelität.

Katze
quelle
1
Go ist immer willkommen :)
4

Java, 4224 (99,29 s)

Stark angepasstes Sieb von Eratosthenes mit dem Vorteil von BitSet

import java.util.BitSet;

public class LargeGoodPrimeGap {

    // Use this to find upto Large Gap of 4032 - Max 4032 found in 55.17 s
    // static int    limit         = 125_00_00_000;

    // Use this to find upto Large Gap of 4224 - Max 4224 found in 99.29 s
    static int    limit         = Integer.MAX_VALUE - 1;

    // BitSet is highly efficient against boolean[] when Billion numbers were involved
    // BitSet uses only 1 bit for each number
    // boolean[] uses 8 bits aka 1 byte for each number which will produce memory issues for large numbers
    static BitSet primes        = new BitSet(limit + 1);
    static int    limitSqrt     = (int) Math.ceil(Math.sqrt(limit));

    static int    maxAllowLimit = Integer.MAX_VALUE - 1;

    static long   start         = System.nanoTime();

    public static void main(String[] args) {

        genPrimes();

        findGoodPrimesLargeGap();

    }

    // Generate Primes by Sieve of Eratosthenes
    // Sieve of Eratosthenes is much efficient than Sieve of Atkins as
    // Sieve of Atkins involes Division, Modulus, Multiplication, Subtraction, Addition but
    // Sieve of Eratosthenes involves only addition and multiplication
    static void genPrimes() {

        // Check if the Given limit exceeds the Permitted Limit 2147483646 (Integer.MAX_VALUE - 1)
        // If the limit exceeded, Out the Error Message and Exit the Program
        if ( limit > maxAllowLimit ) {
            System.err.printf(String.format("Limit %d should not be Greater than Max Limit %d", limit, maxAllowLimit));
            System.exit(0);
        }

        // Mark numbers from 2 to limit + 1 as Prime
        primes.set(2, limit + 1);

        // Now all Values in primes will be true except 0 and 1,
        // True  represents     prime number 
        // False represents not prime number

        // Set the First Prime number
        int prime = 2;
        // Set the First multiple of prime
        int multiple = prime;
        // Reduce the limit by 1 if limit == Interger.MAX_VALUE - 1 to prevent
        // Integer overflow on multiple variable
        int evenLimit = limit == Integer.MAX_VALUE - 1 ? limit - 1 : limit;

        // Mark all Even Numbers as Not Prime except 2
        while ( (multiple += prime) <= evenLimit ) {
            primes.clear(multiple);
        }

        // If evenLimit != limit, set last even number as Not Prime
        if ( evenLimit != limit ) {
            primes.clear(limit);
        }

        int primeAdd;

        // Set odd multiples of each Prime as not Prime;
        // prime <= limitSqrt -> Check Current Prime <= SQRT(limit)
        // prime = primes.nextSetBit(prime + 1) -> Assign the next True (aka Prime) value as Current Prime
        //  ^ - Above initialisation is highly efficient as Next True check is only based on bits
        // prime > 0 -> To handle -ve values returned by above True check if no more True is to be found
        for ( prime = 3; prime > 0 && prime <= limitSqrt; prime = primes.nextSetBit(prime + 1) ) {
            // All Prime Numbers except 2 were odd numbers
            // Adding a Prime number with itself will result in an Even number,
            // but all the Even numbers were already marked as not Prime.
            // So every odd multiple (3rd, 5th, 7th, ...) of Current Prime will only be marked as not Prime
            // and skipping all the even multiples (2nd, 4th, 6th, ...)
            // This reduces the time for prime calculation by ~50% when comparing with all multiples marking
            primeAdd = prime + prime;
            // multiple = prime * prime -> Unmarked Prime will appear only from this number as previous values
            // are already marked as Non Prime by previous prime multiples
            // multiple += primeAdd -> Increases the multiple by multiple + (CurrentPrime x 2) which will
            // always be a odd multiple (5th, 7th, 9th, ...)
            for ( multiple = prime * prime; multiple <= limit && multiple > 0; multiple += primeAdd ) {
                // Clear or False the multiple if it True
                primes.clear(multiple);
            }
        }

        double end = (System.nanoTime() - start) / 1000000000.0;
        System.out.printf("Total Primes upto %d = %d in %.2f s", limit, primes.cardinality(), end);

    }

    static void findGoodPrimesLargeGap() {

        int prevGP = 7;
        int prevDiff = 0;

        for ( int i = 11; i <= limit && i > 0; i = primes.nextSetBit(i + 1) ) {
            int gp = i - 1;
            int distPrimes = 0;
            for ( int j = 2; j <= limitSqrt && distPrimes < 3 && j > 0; j = primes.nextSetBit(j + 1) ) {
                if ( gp % j == 0 ) {
                    ++distPrimes;
                    while ( gp % j == 0 ) {
                        gp = gp / j;
                    }
                    if ( gp <= 1 ) {
                        break;
                    }
                }
                if ( primes.get(gp) ) {
                    ++distPrimes;
                    break;
                }
            }
            if ( distPrimes == 2 ) {
                int currDiff = i - prevGP;
                if ( currDiff > prevDiff ) {
                    System.out.println(
                            String.format("(%d - %d) %d (%.2f s)", i, prevGP, prevDiff = currDiff, (System.nanoTime() - start) / 1000000000.0));
                }
                prevGP = i;
            }
        }

    }

}

Die benötigte Zeit hängt von der Höchstgrenze der zu berechnenden Primzahlen ab.

Zum

static int    limit         = Integer.MAX_VALUE - 1;

Total Primes upto 2147483646 = 105097564 in 17.65 s
(11 - 7) 4 (17.71 s)
(19 - 13) 6 (17.71 s)
(37 - 29) 8 (17.71 s)
(73 - 59) 14 (17.71 s)
(137 - 113) 24 (17.71 s)
(227 - 197) 30 (17.71 s)
(433 - 401) 32 (17.71 s)
(557 - 509) 48 (17.71 s)
(769 - 719) 50 (17.71 s)
(1283 - 1229) 54 (17.71 s)
(1697 - 1637) 60 (17.71 s)
(1823 - 1733) 90 (17.71 s)
(2417 - 2309) 108 (17.71 s)
(3329 - 3209) 120 (17.71 s)
(4673 - 4547) 126 (17.71 s)
(5639 - 5507) 132 (17.71 s)
(7433 - 7247) 186 (17.71 s)
(8369 - 8147) 222 (17.71 s)
(16487 - 16229) 258 (17.71 s)
(32507 - 32237) 270 (17.72 s)
(34157 - 33863) 294 (17.72 s)
(35879 - 35573) 306 (17.72 s)
(59393 - 59069) 324 (17.72 s)
(60293 - 59747) 546 (17.72 s)
(145823 - 145253) 570 (17.73 s)
(181157 - 180569) 588 (17.73 s)
(222059 - 221303) 756 (17.73 s)
(282617 - 281837) 780 (17.73 s)
(509513 - 508583) 930 (17.74 s)
(1046807 - 1045763) 1044 (17.75 s)
(1713599 - 1712549) 1050 (17.77 s)
(1949639 - 1948559) 1080 (17.77 s)
(2338823 - 2337683) 1140 (17.78 s)
(3800999 - 3799403) 1596 (17.80 s)
(6249743 - 6248057) 1686 (17.85 s)
(12464909 - 12462977) 1932 (17.96 s)
(30291749 - 30289709) 2040 (18.31 s)
(31641773 - 31639613) 2160 (18.34 s)
(34808447 - 34806257) 2190 (18.41 s)
(78199097 - 78196487) 2610 (19.40 s)
(105072497 - 105069857) 2640 (20.07 s)
(114949007 - 114946253) 2754 (20.32 s)
(246225989 - 246223127) 2862 (24.01 s)
(255910223 - 255907313) 2910 (24.31 s)
(371348513 - 371345567) 2946 (27.97 s)
(447523757 - 447520673) 3084 (30.50 s)
(466558553 - 466555373) 3180 (31.15 s)
(575713847 - 575710649) 3198 (35.00 s)
(606802529 - 606799289) 3240 (36.13 s)
(784554983 - 784551653) 3330 (42.89 s)
(873632213 - 873628727) 3486 (46.39 s)
(987417437 - 987413849) 3588 (50.97 s)
(1123404923 - 1123401023) 3900 (56.60 s)
(1196634239 - 1196630297) 3942 (59.70 s)
(1247118179 - 1247114147) 4032 (61.88 s)
(1964330609 - 1964326433) 4176 (94.89 s)
(2055062753 - 2055058529) 4224 (99.29 s)
Der Coder
quelle
Dies ist überraschend schneller als die andere Java-Einreichung!
@Lembik, ich werde später heute eine genauere Erklärung hinzufügen.
The Coder
@ Lembik, die Sieblogik hochgradig angepasst. Die Zeit, die benötigt wird, um alle Primzahlen zu generieren, wurde um ~ 50% reduziert. Innerhalb von 100s kann also ein maximaler großer Diff innerhalb von Integer.MAX_VALUE gefunden werden
The Coder
3

Python 3, 1464

Mit der Hilfe von Lembik , dessen Idee es war, nach einer Potenz von zwei auf die ersten beiden guten Primzahlen zu prüfen und sofort mit der nächsten Potenz von zwei fortzufahren . Wenn jemand dies als Sprungpunkt verwenden kann, fühlen Sie sich frei. Ein Teil meiner Ergebnisse ist unten, nachdem dies in IDLE ausgeführt wurde. Der Code folgt.

Dank an primo, als ich mir die Liste der kleinen Primzahlen für diesen Code schnappte.

Bearbeiten: Ich habe den Code so bearbeitet, dass er den tatsächlichen Spezifikationen des Problems entspricht (zwei unterschiedliche Primteiler, nicht genau zwei unterschiedliche Primteiler), und ich habe implementiert, dass ich nicht zur nächsten Zweierpotenz übergehe, bis die guten Primzahlen, die das Programm gefunden hat, a haben Lücke größer als die der letzten beiden guten gefundenen Primzahlen. Ich sollte auch Peter Taylor meinen Dank aussprechen , da ich seine Idee benutzte, dass gute Primzahlen nur wenige Werte mod 60 sein könnten.

Wieder habe ich dies auf einem langsamen Computer im Leerlauf ausgeführt, so dass die Ergebnisse in etwas wie PyPy möglicherweise schneller sind, aber ich konnte nicht überprüfen.

Eine Stichprobe meiner Ergebnisse (p, q, qp, time):

8392997 8393999 1002 2.6750288009643555
16814663 16815713 1050 7.312098026275635
33560573 33561653 1080 8.546097755432129
67118027 67119323 1296 10.886202335357666
134245373 134246753 1380 20.37420392036438
268522349 268523813 1464 59.23987054824829
536929187 536931047 1860 95.36681914329529

Mein Code:

from time import time

small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239]

def good(n=0):
    end = n or 100
    time0 = time()
    x,y = 0,0
    recent_max = 0
    for i in range(2,end):
        two = 2**i
        for j in range(two+3,2*two,2):
            m=j%60
            if not(m==17or m==23or m==29or m==47or m==53or m==59): continue
            comp = 0
            for p in small_primes:
                if j % p == 0 and j != p:
                    comp = 1
                    break
            for p in range(241,int(pow(j,.5))+1,2):
                if j % p == 0 and j != p:
                    comp = 1
                    break
            if comp: continue
            d = j-1 & 1-j
            if is_prime_power((j-1)/d):
                x,y = y,j
                if x and y and y-x > recent_max:
                    print(x,y,y-x,time()-time0)
                    recent_max = y-x
                    x,y=0,0
                    break

def is_prime_power(n):
    for p in small_primes:
        if n%p == 0:
            n //= p
            while n % p == 0: n //= p
            return n == 1
    for p in range(241,int(pow(n,.5))+1,2):
        if n%p == 0:
            n //= p
            while n % p == 0: n //= p
            return n == 1
    return n > 1

good()
Sherlock9
quelle
Ich denke nicht, dass Ihr Code korrekt ist. Haben Sie eine Rechtfertigung für das Inkrementieren jum 4anstatt 2? Und Sie scheinen bedingungslos abzulehnen, wenn j-1es sich bei einer Primzahl nicht um eine Zweierpotenz handelt. Hier sollten Sie testen, ob es sich um eine Primzahl handelt , die eine Zweierpotenz ist.
Peter Taylor
@PeterTaylor Oh süßer Jesus, danke. Ich wusste, dass mir etwas fehlt. Zwei verschiedene Primfaktoren, nicht genau zwei verschiedene Primfaktoren. Ich werde das morgen früh korrigieren.
Sherlock9
Tatsächlich. Die nächste gute Prime nach 549755815199 ist 549755816417 (2 ^ 5 x 17179869263), eine Lücke von nur 1218.
primo
2

Gehe zu: Alle Ganzzahlen: 5112

max |q-p| 5112 q 4278566879 p 4278561767

good.go:

// Find the largest gap between good primes
// https://codegolf.stackexchange.com/questions/65876/
//
// We say a prime p is good if p-1 has exactly 2 distinct prime factors.
//
// Your code should output the absolute difference between consecutive
// good primes q and p so that |q-p| is as large as possible and
// q is the smallest good prime larger than p. You may output any number of
// good pairs and your last output will be taken as the score.
//
// The timings will be run on a standard Ubuntu install on
// an 8GB AMD FX-8350 eight-core processor.
// http://products.amd.com/en-us/search/CPU/AMD-FX-Series/AMD-FX-8-Core-Black-Edition/FX-8350/92
//
// I will kill your code after 2 minutes unless it starts to
// run out of memory before that. It should therefore make sure to
// output something before the cut off.
//
// A067466 Primes p such there are 2 distinct prime factors in p-1.
// https://oeis.org/A067466
//
// 7, 11, 13, 19, 23, 29, 37, 41, 47, 53, 59, 73, 83, 89, 97, 101, 107, ...
//
// peterSO: max |q-p| 5112 q 4278566879 p 4278561767
// https://codegolf.stackexchange.com/a/73770/51537
//
// p is a good prime number, if
//
//   p-1 = x**a * y**b
//
// Where p is a prime number, x and y are are distinct prime numbers,
// and a and b are positive integers.
//
// For p > 2, p is odd and (p-1) is even. Therefore, either x or y = 2.

package main

import (
    "fmt"
    "math"
    "runtime"
    "time"
)

var start = time.Now()

const (
    primality = 0x80
    prime     = 0x00
    notprime  = 0x80
    distinct  = 0x7F
)

func oddPrimes(n uint64) (sieve []uint8) {
    // odd prime numbers
    sieve = make([]uint8, (n+1)/2)
    sieve[0] = notprime
    p := uint64(3)
    for i := p * p; i <= n; i = p * p {
        for j := i; j <= n; j += 2 * p {
            sieve[j/2] = notprime
        }
        for p += 2; sieve[p/2] == notprime; p += 2 {
        }
    }
    return sieve
}

func maxGoodGap(n uint64) {
    // odd prime numbers
    sieve := oddPrimes(n)
    // good prime numbers
    fmt.Println("|q-p|", " = ", "q", "-", "p", ":", "t")
    m := ((n + 1) + 1) / 2
    var max, px, qx uint64
    for i, s := range sieve {
        if s == prime {
            p := 2*uint64(i) + 1
            if p < m {
                // distinct odd prime number factors
                for j := p + 2*p; j <= m; j += 2 * p {
                    sieve[j/2]++
                }
            }
            // Remove factors of 2 from p-1.
            p1 := p - 1
            for ; p1&1 == 0; p1 >>= 1 {
            }
            // Does p-1 have exactly 2 distinct prime factors?
            // That is, one distinct prime factor other than 2.
            if sieve[p1/2]&distinct <= 1 {
                // maximum consecutive good prime gap
                px, qx = qx, p
                if max < qx-px {
                    max = qx - px
                    if px != 0 {
                        fmt.Println(max, " = ", qx, "-", px, " : ", time.Since(start))
                    }
                }
            }
        }
    }
}

func init() {
    runtime.GOMAXPROCS(1)
}

func main() {
    // Two minutes: max |q-p| 5112 q 4278566879 p 4278561767
    var n uint64 = math.MaxUint32 // 4294967295
    fmt.Println("n =", n)
    maxGoodGap(n)
    fmt.Println("n =", n, "real =", time.Since(start))
}

Ausgabe:

$ go build good.go && ./good
n = 4294967295
|q-p|  =  q - p : t
4  =  11 - 7  :  18.997478838s
6  =  29 - 23  :  19.425839298s
8  =  37 - 29  :  19.5924487s
14  =  73 - 59  :  20.351329953s
24  =  137 - 113  :  21.339752269s
30  =  227 - 197  :  22.310449147s
32  =  433 - 401  :  23.511560468s
48  =  557 - 509  :  23.904677275s
50  =  769 - 719  :  24.518310365s
54  =  1283 - 1229  :  25.350700584s
60  =  1697 - 1637  :  25.782520338s
90  =  1823 - 1733  :  25.883049102s
108  =  2417 - 2309  :  26.300049556s
120  =  3329 - 3209  :  26.735575056s
126  =  4673 - 4547  :  27.190597227s
132  =  5639 - 5507  :  27.420936586s
186  =  7433 - 7247  :  27.761805597s
222  =  8369 - 8147  :  27.909656781s
258  =  16487 - 16229  :  28.710626512s
270  =  32507 - 32237  :  29.469193619s
294  =  34157 - 33863  :  29.525197303s
306  =  35879 - 35573  :  29.578355515s
324  =  59393 - 59069  :  30.11620771s
546  =  60293 - 59747  :  30.131928104s
570  =  145823 - 145253  :  31.014864294s
588  =  181157 - 180569  :  31.223246627s
756  =  222059 - 221303  :  31.415507367s
780  =  282617 - 281837  :  31.640006297s
930  =  509513 - 508583  :  32.169485481s
1044  =  1046807 - 1045763  :  32.783669616s
1050  =  1713599 - 1712549  :  33.186784964s
1080  =  1949639 - 1948559  :  33.290533456s
1140  =  2338823 - 2337683  :  33.434568615s
1596  =  3800999 - 3799403  :  33.810580195s
1686  =  6249743 - 6248057  :  34.183678793s
1932  =  12464909 - 12462977  :  34.683651976s
2040  =  30291749 - 30289709  :  35.296022077s
2160  =  31641773 - 31639613  :  35.325773748s
2190  =  34808447 - 34806257  :  35.390646164s
2610  =  78199097 - 78196487  :  35.878632519s
2640  =  105072497 - 105069857  :  36.018381898s
2754  =  114949007 - 114946253  :  36.058571726s
2862  =  246225989 - 246223127  :  36.337844257s
2910  =  255910223 - 255907313  :  36.351442541s
2946  =  371348513 - 371345567  :  36.504506082s
3084  =  447523757 - 447520673  :  36.60250012s
3180  =  466558553 - 466555373  :  36.626346413s
3198  =  575713847 - 575710649  :  36.761306175s
3240  =  606802529 - 606799289  :  36.799984807s
3330  =  784554983 - 784551653  :  37.014430956s
3486  =  873632213 - 873628727  :  37.121270926s
3588  =  987417437 - 987413849  :  37.25618423s
3900  =  1123404923 - 1123401023  :  37.417362803s
3942  =  1196634239 - 1196630297  :  37.504784859s
4032  =  1247118179 - 1247114147  :  37.565187304s
4176  =  1964330609 - 1964326433  :  38.39652816s
4224  =  2055062753 - 2055058529  :  38.502515034s
4290  =  2160258917 - 2160254627  :  38.625633674s
4626  =  2773400633 - 2773396007  :  39.324109323s
5112  =  4278566879 - 4278561767  :  41.022658954s
n = 4294967295 real = 41.041491885s
$

Zum Vergleich: peterSO max 5112 in 41.04s gegen The Coder max 4176 in 51.97s.

Coder: max | qp | 4176 q 1964330609 p 1964326433

Ausgabe:

$ javac coder.java && java -Xmx1G coder
Total Primes upto 2147483646 = 105097564 in 11.61 s
(11 - 7) 4 (11.64 s)
<< SNIP >>
(1247118179 - 1247114147) 4032 (34.86 s)
(1964330609 - 1964326433) 4176 (51.97 s)
$
peterSO
quelle
Das sieht sehr beeindruckend aus.