Hat Alan Turings Schüler Robin Gandy behauptet, Charles Babbage habe keine Ahnung von einer universellen Rechenmaschine?

10

Robin Gandy war ein Schüler von Alan Turing .

Gandy führte eine Analyse von Babbages Analytical Engine durch (siehe 'Gandy - Der Zusammenfluss von Ideen im Jahr 1936', zitiert in 'Herken, Rolf - Die universelle Turingmaschine - Eine Umfrage des halben Jahrhunderts . Springer Verlag') - und sagte, dass dies der Fall sei (vgl. S. 52–53):

  1. Die arithmetischen Funktionen +, -, ×, wobei - "richtige" Subtraktion x - y = 0 anzeigt, wenn y ≥ x ist.
  2. Jede Folge von Operationen ist eine Operation.
  3. Iteration einer Operation (n-malige Wiederholung einer Operation P).
  4. Bedingte Iteration (n-maliges Wiederholen einer Operation P, abhängig vom "Erfolg" von Test T).
  5. Bedingte Übertragung (dh bedingtes "goto").

Dann sagt er

Die Funktionen, die durch (1), (2) und (4) berechnet werden können, sind genau diejenigen, die Turing berechenbar sind.

(S. 53).

Dann sagt er:

… Liegt der Schwerpunkt auf der Programmierung einer festen iterierbaren Folge von arithmetischen Operationen. Die grundlegende Bedeutung der bedingten Iteration und des bedingten Transfers für eine allgemeine Theorie der Rechenmaschinen wird nicht erkannt…

Gandy p. 55

Ich bewerte hier den Umfang von Gandys Behauptung . (Ob es richtig oder falsch ist). Er scheint zu behaupten, dass Babbage, obwohl er auf einen Begriff der Turing-Vollständigkeit gestoßen zu sein scheint (der jedes Programm mit (1), (2) und (4) ausdrücken kann - keinen Begriff für eine berechenbare Funktion hatte (vielleicht) Gandy sagte, da die Arbeit von Babbage vor der Arbeit von Hilbert und Godel war , habe er nicht die mathematischen Werkzeuge, um die Definition einer universellen Rechenmaschine zu binden.)

Meine Frage ist: Hat Alan Turings Schüler Robin Gandy behauptet, Charles Babbage habe keine Ahnung von einer universellen Rechenmaschine?

Falkenauge
quelle
2
Beachten Sie, dass es auch eine Geschichte der Wissenschaft und Mathematik gibt. Stackexchange hsm.stackexchange.com
usul
Ich bin ein wenig verwirrt von der Seitenreferenzierung. Wenn alle Seitenzahlen von Gandy stammen, wäre es vielleicht klarer, "(Gandy, S. 52-53)", (Gandy, S. 53) "und (Gandy, S. 55)" zu sagen. Für alle Auszüge, die in Rolf zitiert werden, könnte die Zuschreibung erweitert werden als (Gandy, S. 5x; wie in Rolf, S. xx zitiert) ". " Vgl. " Ist die Abkürzung für Latin Confer / Conferatur (" Vergleiche "). Das bedeutet "geh und sieh dir auch diese andere Sache zum Vergleich oder zur Gegenüberstellung an", daher macht es keinen Sinn, das für die Hauptsache zu sagen, die du zitierst.
Jacob C. sagt Reinstate Monica

Antworten:

21

Nein, das Gegenteil. Dieses Zitat von Gandy's bezieht sich nicht auf Babbage, sondern auf einige Vorschläge für ein universelles Computing zwischen Babbage und Turing. Gandy sagt, dass diese Vorschläge Babbages Anerkennung der Bedeutung von Verzweigung und Iteration für die universelle Berechnung nicht hatten.


In "The Confluence of Ideas in 1936" von Gandy, wie in dem Buch "The Universal Turing Machine - A Half Century Survey" abgedruckt, ist Abschnitt 2 "Babbage and His Followers".

Hier betont Gandy, dass Babbage "bedingte Iteration" und "bedingte Übertragung" verstanden und respektiert hat, z. B. Ende von p53 und Spitze von p54

Obwohl Babbage die bedingte Übertragung erwähnt (67-68), verwendet er unter natürlichem Respekt für eine gut strukturierte Programmierung nur die bedingte Iteration [....]. Er gibt die bedingte Übertragung explizit an (240), sodass eine Anweisung "Gehe zu" möglich ist muss möglicherweise durch Klingeln ausgeführt werden, um den Begleiter zu rufen; er gibt ein Beispiel für seine Verwendung (241).

(Hier bezieht sich Gandy auf den Artikel von Menabrea 1842 über Babbages Motor, scheint aber die Ideen Babbage selbst zuzuschreiben.)

Gandy zitiert dann Babbage

Dass die gesamte Entwicklung und der gesamte Betrieb der Analyse nun maschinell ausgeführt werden können.

und schreibt

Babbage hatte in seiner Arbeit über allgemeine Algebra und funktionale Gleichungen seine Fähigkeit gezeigt, abstrakt zu denken. Wenn man ihn dann dazu gebracht hätte, darüber zu spekulieren (nicht schwer!), Was mit einer abstrakten Maschine getan werden könnte, ohne Einschränkungen hinsichtlich ihrer Speicherung, hätte er sicherlich einer Version zugestimmt (basierend auf den Abschnitten 2.1. (1) - (5)) der These der Kirche.

Dann fährt Gandy mit Abschnitt 2.3, "Nachfolgende Entwicklungen" fort. Er schreibt

Andere Autoren, die sich mit praktischeren Maschinen befassten, verwiesen auf Babbages Arbeit. Beispiele aus Randell 1982 sind: M. d'Ocagne [1922], L. Couffignal [1933], V. Bush 1936, HH Aiken 11964] (ein unveröffentlichtes Memorandum von 1937). Der Schwerpunkt liegt jedoch auf der Programmierung einer festen iterierbaren Folge von arithmetischen Operationen. Die grundlegende Bedeutung der bedingten Iteration und des bedingten Transfers für eine allgemeine Theorie der Rechenmaschinen wird nicht anerkannt, obwohl die Prinzipien in ganz bestimmten Kontexten angewendet werden können [....]

Schließlich schreibt Gandy:

Schlussfolgerungen. Babbage behauptete, es handele sich tatsächlich um eine Version der These der Kirche. Seine Arbeit wurde nie ganz vergessen, aber ihre theoretische Bedeutung - sozusagen ihre Bedeutung als Software - wurde wenig anerkannt [....]

usul
quelle