Peirce Quincuncial Map produzieren? [geschlossen]

11

Soweit ich weiß, können weder PROJ4- noch ESRI-Tools die Peirce-Quincuncial-Projektion anwenden.

Weiß jemand, welche Bibliotheken / Software es verwalten können?

giohappy
quelle
@Rodrigo Ich würde gerne den Code verwenden, den Sie geteilt haben, aber ich weiß nicht wie und weiß nicht, wo ich anfangen soll. Gibt es Ressourcen, auf die Sie mich verweisen könnten? Kann es mit QGIS verwendet werden?
Lane
@ Lane Ich habe eine Antwort hinzugefügt, die erklärt, wie man es in R verwendet. Fühlen Sie sich frei, etwas zu fragen.
Rodrigo

Antworten:

1

In R kann man diese Funktion (unten kopiert) verwenden, um jede Koordinate in einem Shapefile zu transformieren und dann die Karte zu zeichnen.

# constants
pi<-acos(-1.0)
twopi<-2.0*pi
halfpi<-0.5*pi
degree<-pi / 180
halfSqrt2<-sqrt(2) / 2
quarterpi<-0.25 * pi
mquarterpi<--0.25 * pi
threequarterpi<-0.75 * pi
mthreequarterpi<--0.75 * pi
radian<-180/pi
sqrt2<-sqrt(2)
sqrt8<-2. * sqrt2
halfSqrt3<-sqrt(3) / 2
PeirceQuincuncialScale<-3.7081493546027438 ;# 2*K(1/2)
PeirceQuincuncialLimit<-1.8540746773013719 ;# K(1/2)


ellFaux<-function(cos_phi,sin_phi,k){
  x<-cos_phi * cos_phi
  y<-1.0 - k * k * sin_phi * sin_phi
  z<-1.0
  rf<-ellRF(x,y,z)
  return(sin_phi * rf)
}

ellRF<-function(x,y,z){
  if (x < 0.0 || y < 0.0 || z < 0.0) {
    print("Negative argument to Carlson's ellRF")
    print("ellRF negArgument")
  }
  delx<-1.0; 
  dely<-1.0; 
  delz<-1.0
  while(abs(delx) > 0.0025 || abs(dely) > 0.0025 || abs(delz) > 0.0025) {
    sx<-sqrt(x)
    sy<-sqrt(y)
    sz<-sqrt(z)
    len<-sx * (sy + sz) + sy * sz
    x<-0.25 * (x + len)
    y<-0.25 * (y + len)
    z<-0.25 * (z + len)
    mean<-(x + y + z) / 3.0
    delx<-(mean - x) / mean
    dely<-(mean - y) / mean
    delz<-(mean - z) / mean
  }
  e2<-delx * dely - delz * delz
  e3<-delx * dely * delz
  return((1.0 + (e2 / 24.0 - 0.1 - 3.0 * e3 / 44.0) * e2+ e3 / 14) / sqrt(mean))
}

toPeirceQuincuncial<-function(lambda,phi,lambda_0=20.0){
  # Convert latitude and longitude to radians relative to the
  # central meridian

  lambda<-lambda - lambda_0 + 180
  if (lambda < 0.0 || lambda > 360.0) {
    lambda<-lambda - 360 * floor(lambda / 360)
  }
  lambda<-(lambda - 180) * degree
  phi<-phi * degree

  # Compute the auxiliary quantities 'm' and 'n'. Set 'm' to match
  # the sign of 'lambda' and 'n' to be positive if |lambda| > pi/2

  cos_phiosqrt2<-halfSqrt2 * cos(phi)
  cos_lambda<-cos(lambda)
  sin_lambda<-sin(lambda)
  cos_a<-cos_phiosqrt2 * (sin_lambda + cos_lambda)
  cos_b<-cos_phiosqrt2 * (sin_lambda - cos_lambda)
  sin_a<-sqrt(1.0 - cos_a * cos_a)
  sin_b<-sqrt(1.0 - cos_b * cos_b)
  cos_a_cos_b<-cos_a * cos_b
  sin_a_sin_b<-sin_a * sin_b
  sin2_m<-1.0 + cos_a_cos_b - sin_a_sin_b
  sin2_n<-1.0 - cos_a_cos_b - sin_a_sin_b
  if (sin2_m < 0.0) {
    sin2_m<-0.0
  }
  sin_m<-sqrt(sin2_m)
  if (sin2_m > 1.0) {
    sin2_m<-1.0
  }
  cos_m<-sqrt(1.0 - sin2_m)
  if (sin_lambda < 0.0) {
    sin_m<--sin_m
  }
  if (sin2_n < 0.0) {
    sin2_n<-0.0
  }
  sin_n<-sqrt(sin2_n)
  if (sin2_n > 1.0) {
    sin2_n<-1.0 
  }
  cos_n<-sqrt(1.0 - sin2_n)
  if (cos_lambda > 0.0) {
    sin_n<--sin_n
  }

  # Compute elliptic integrals to map the disc to the square

  x<-ellFaux(cos_m,sin_m,halfSqrt2)
  y<-ellFaux(cos_n,sin_n,halfSqrt2)

  # Reflect the Southern Hemisphere outward

  if(phi < 0) {
    if (lambda < mthreequarterpi) {
      y<-PeirceQuincuncialScale - y
    } else if (lambda < mquarterpi) {
      x<--PeirceQuincuncialScale - x
    } else if (lambda < quarterpi) {
      y<--PeirceQuincuncialScale - y
    } else if (lambda < threequarterpi) {
      x<-PeirceQuincuncialScale - x
    } else {
      y<-PeirceQuincuncialScale - y
    }
  }

  # Rotate the square by 45 degrees to fit the screen better

  X<-(x - y) * halfSqrt2
  Y<-(x + y) * halfSqrt2
  res<-list(X,Y)
  return(res)
}

Nun, wie man es benutzt.

library(rgdal)
p <- readOGR('../shp/ne_110m_admin_0_map_units','ne_110m_admin_0_map_units') # downloaded from https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m/cultural/ne_110m_admin_0_map_units.zip
ang <- 28 # the lambda_0 from the Peirce function
# change all coordinates
for (p1 in 1:length(p@polygons)) {
  print(paste0(p1,'/',length(p@polygons)))
  flush.console()
  for (p2 in 1:length(p@polygons[[p1]]@Polygons)) {
    for (p3 in 1:nrow(p@polygons[[p1]]@Polygons[[p2]]@coords)) {
      pos <- toPeirceQuincuncial(p@polygons[[p1]]@Polygons[[p2]]@coords[p3,1],
                                 p@polygons[[p1]]@Polygons[[p2]]@coords[p3,2],ang)
      p@polygons[[p1]]@Polygons[[p2]]@coords[p3,1] <- pos[[1]][1]
      p@polygons[[p1]]@Polygons[[p2]]@coords[p3,2] <- pos[[2]][1]
    }
  }
}
# change the bbox of the SpatialPolygonsDataFrame object (p).
z <- toPeirceQuincuncial(0,-90,ang)[[1]][1]
p@bbox[1,1] <- -z
p@bbox[1,2] <- z
p@bbox[2,1] <- -z
p@bbox[2,2] <- z
# start plotting
par(mar=c(0,0,0,0),bg='#a7cdf2',xaxs='i',yaxs='i')
plot(p,col='gray',lwd=.5)
for (lon in 15*1:24) { # meridians
  pos <- 0
  posAnt <- 0
  for (lat in -90:90) {
    if (length(pos) == 2) {
      posAnt <- pos
    }
    pos <- toPeirceQuincuncial(lon,lat,ang)
    if (length(posAnt) == 2) {
      segments(pos[[1]][1],pos[[2]][1],posAnt[[1]][1],posAnt[[2]][1],col='white',lwd=.5)
    }
  }
}
lats <- 15*1:5 # parallels
posS <- matrix(0,length(lats),2) # southern parallels
posST <- 0 # southern tropic (Tropic of Capricorn)
pos0 <- 0 # Equator
posN <- matrix(0,length(lats),2) # northern parallels
posNT <- 0 # northern tropic (Tropic of Cancer)
for (lon in 0:360) {
  posAntS <- posS
  posAntST <- posST
  posAnt0 <- pos0
  posAntN <- posN
  posAntNT <- posNT
  pos0 <- unlist(toPeirceQuincuncial(lon,0,ang))
  posST <- unlist(toPeirceQuincuncial(lon,-23.4368,ang))
  posNT <- unlist(toPeirceQuincuncial(lon,23.4368,ang))
  for (i in 1:length(lats)) {
    posS[i,] <- unlist(toPeirceQuincuncial(lon,-lats[i],ang))
    posN[i,] <- unlist(toPeirceQuincuncial(lon,lats[i],ang))
  }
  if (lon > 0) {
    segments(pos0[1],pos0[2],posAnt0[1],posAnt0[2],col='red',lwd=1)
    segments(posNT[1],posNT[2],posAntNT[1],posAntNT[2],col='yellow')
    for (i in 1:length(lats)) {
      segments(posN[i,1],posN[i,2],posAntN[i,1],posAntN[i,2],col='white',lwd=.5)
    }
    if (!(lon %in% round(90*(0:3+.5)+ang))) {
      for (i in 1:length(lats)) {
        segments(posS[i,1],posS[i,2],posAntS[i,1],posAntS[i,2],col='white',lwd=.5)
      }
      segments(posST[1],posST[2],posAntST[1],posAntST[2],col='yellow')
    } else {
      for (i in 1:length(lats)) {
        posS[i,] <- unlist(toPeirceQuincuncial(lon-0.001,-lats[i],ang))
        segments(posS[i,1],posS[i,2],posAntS[i,1],posAntS[i,2],col='white',lwd=.5)
        posS[i,] <- unlist(toPeirceQuincuncial(lon,-lats[i],ang))
      }
      posST <- unlist(toPeirceQuincuncial(lon-0.001,-23.4368,ang))
      segments(posST[1],posST[2],posAntST[1],posAntST[2],col='yellow')
      posST <- unlist(toPeirceQuincuncial(lon,-23.4368,ang))
    }
  }
}
dev.print(width=1000,height=1000,'Peirce.png',dev=png)

Peirce Quincuncial politische Weltkarte

Rodrigo
quelle
0

Mapthematics Geocart ist eine kommerzielle Software, die die Peirce-Projektion zu unterstützen scheint . (Ich habe es selbst nicht verwendet, daher kann ich nicht überprüfen, wie es funktioniert.)

Ich sehe, dass diese Projektion auch zum Erstellen einer bestimmten Art von Panoramafoto verwendet wird . Wenn Sie nur ein Bild projizieren müssen (im Gegensatz zu Vektordatensätzen), können Sie möglicherweise eine Bildverarbeitungslösung finden. Hier finden Sie beispielsweise ein Tutorial zum Erstellen von Peirce-Panoramen mit Photoshop-Plugins sowie eine Diskussion (mit Skripten) zum Anwenden der Projektion auf Bilder mit MathMap .


Das Papier Warping Peirce Quincuncial Panoramas von Chamberlain Fong und Brian K. Vogel enthält eine MatLab- Implementierung ihres Ansatzes. Es ist auch bildorientiert , aber MatLab kann Shapefiles lesen , sodass möglicherweise eine Vektorprojektion zusammengeschustert werden könnte…

geliebt
quelle