Ein Beispiel für eine Tissot-Ellipse für eine gleichwinklige Projektion?

9

Ich versuche, die Verzerrung einer gleichwinkligen Projektion über Tissot-Indikatoren zu berechnen. Ich habe versucht, den Anweisungen in diesem Beitrag zu folgen (unter anderem), aber es ist für mich als Amateur unverständlich.

Ich frage mich also, ob jemand so freundlich wäre, eine einzelne Tissot-Ellipse für ein Beispiel eines gleichwinkligen Lat / Long zu berechnen (je nachdem, was Ihr Favorit ist und bei einer gleichwinkligen Projektion verzerrt ist). Ich verstehe nicht genau, was die Variablen sind und woher sie kommen, daher wäre es sehr nützlich, die Gleichungen in Aktion zu sehen.

Ich versuche, diese Gleichungen zu verstehen, damit ich sie in ein Mapping-Programm einbinden kann, das ich codiere. Ich habe in diesem Thread eine Reihe allgemeiner Fragen gestellt , aber ich denke, ein bestimmtes Beispiel wird mir helfen, den Rest herauszufinden.

Vielen Dank wie immer.

NCashew

NCashew
quelle

Antworten:

8

Für die Aufzeichnung ist hier eine vollständige, kommentierte Implementierung der Tissot-Indikatrix (und verwandter) Berechnungen in Rmit einem Beispiel. Die Quelle der Gleichungen ist John Snyders Kartenprojektionen - Ein Arbeitshandbuch.

Tissot Indicatrix

tissot <- function(lambda, phi, prj=function(z) z+0, asDegrees=TRUE, A = 6378137, f.inv=298.257223563, ...) {
  #
  # Compute properties of scale distortion and Tissot's indicatrix at location `x` = c(`lambda`, `phi`)
  # using `prj` as the projection.  `A` is the ellipsoidal semi-major axis (in meters) and `f.inv` is
  # the inverse flattening.  The projection must return a vector (x, y) when given a vector (lambda, phi).
  # (Not vectorized.)  Optional arguments `...` are passed to `prj`.
  #
  # Source: Snyder pp 20-26 (WGS 84 defaults for the ellipsoidal parameters).
  # All input and output angles are in degrees.
  #
  to.degrees <- function(x) x * 180 / pi
  to.radians <- function(x) x * pi / 180
  clamp <- function(x) min(max(x, -1), 1)                             # Avoids invalid args to asin
  norm <- function(x) sqrt(sum(x*x))
  #
  # Precomputation.
  #
  if (f.inv==0) {                                                     # Use f.inv==0 to indicate a sphere
    e2 <- 0 
  } else {
    e2 <- (2 - 1/f.inv) / f.inv                                       # Squared eccentricity
  }
  if (asDegrees) phi.r <- to.radians(phi) else phi.r <- phi
  cos.phi <- cos(phi.r)                                               # Convenience term
  e2.sinphi <- 1 - e2 * sin(phi.r)^2                                  # Convenience term
  e2.sinphi2 <- sqrt(e2.sinphi)                                       # Convenience term
  if (asDegrees) units <- 180 / pi else units <- 1                    # Angle measurement units per radian
  #
  # Lengths (the metric).
  #
  radius.meridian <- A * (1 - e2) / e2.sinphi2^3                      # (4-18)
  length.meridian <- radius.meridian                                  # (4-19)
  radius.normal <- A / e2.sinphi2                                     # (4-20)
  length.normal <- radius.normal * cos.phi                            # (4-21)
  #
  # The projection and its first derivatives, normalized to unit lengths.
  #
  x <- c(lambda, phi)
  d <- numericDeriv(quote(prj(x, ...)), theta="x")
  z <- d[1:2]                                                         # Projected coordinates
  names(z) <- c("x", "y")
  g <- attr(d, "gradient")                                            # First derivative (matrix)
  g <- g %*% diag(units / c(length.normal, length.meridian))          # Unit derivatives
  dimnames(g) <- list(c("x", "y"), c("lambda", "phi"))
  g.det <- det(g)                                                     # Equivalent to (4-15)
  #
  # Computation.
  #
  h <- norm(g[, "phi"])                                               # (4-27)
  k <- norm(g[, "lambda"])                                            # (4-28)
  a.p <- sqrt(max(0, h^2 + k^2 + 2 * g.det))                          # (4-12) (intermediate)
  b.p <- sqrt(max(0, h^2 + k^2 - 2 * g.det))                          # (4-13) (intermediate)
  a <- (a.p + b.p)/2                                                  # (4-12a)
  b <- (a.p - b.p)/2                                                  # (4-13a)
  omega <- 2 * asin(clamp(b.p / a.p))                                 # (4-1a)
  theta.p <- asin(clamp(g.det / (h * k)))                             # (4-14)
  conv <- (atan2(g["y", "phi"], g["x","phi"]) + pi / 2) %% (2 * pi) - pi # Middle of p. 21
  #
  # The indicatrix itself.
  # `svd` essentially redoes the preceding computation of `h`, `k`, and `theta.p`.
  #
  m <- svd(g)
  axes <- zapsmall(diag(m$d) %*% apply(m$v, 1, function(x) x / norm(x)))
  dimnames(axes) <- list(c("major", "minor"), NULL)

  return(list(location=c(lambda, phi), projected=z, 
           meridian_radius=radius.meridian, meridian_length=length.meridian,
           normal_radius=radius.normal, normal_length=length.normal,
           scale.meridian=h, scale.parallel=k, scale.area=g.det, max.scale=a, min.scale=b, 
           to.degrees(zapsmall(c(angle_deformation=omega, convergence=conv, intersection_angle=theta.p))),
           axes=axes, derivatives=g))
}
indicatrix <- function(x, scale=1, ...) {
  # Reprocesses the output of `tissot` into convenient geometrical data.
  o <- x$projected
  base <- ellipse(o, matrix(c(1,0,0,1), 2), scale=scale, ...)             # A reference circle
  outline <- ellipse(o, x$axes, scale=scale, ...)
  axis.major <- rbind(o + scale * x$axes[1, ], o - scale * x$axes[1, ])
  axis.minor <- rbind(o + scale * x$axes[2, ], o - scale * x$axes[2, ])
  d.lambda <- rbind(o + scale * x$derivatives[, "lambda"], o - scale * x$derivatives[, "lambda"])
  d.phi <- rbind(o + scale * x$derivatives[, "phi"], o - scale * x$derivatives[, "phi"])
  return(list(center=x$projected, base=base, outline=outline, 
              axis.major=axis.major, axis.minor=axis.minor,
              d.lambda=d.lambda, d.phi=d.phi))
}
ellipse <- function(center, axes, scale=1, n=36, from=0, to=2*pi) {
  # Vector representation of an ellipse at `center` with axes in the *rows* of `axes`.
  # Returns an `n` by 2 array of points, one per row.
  theta <- seq(from=from, to=to, length.out=n)
  t((scale * t(axes))  %*% rbind(cos(theta), sin(theta)) + center)
}
#
# Example: analyzing a GDAL reprojection.
#
library(rgdal)

prj <- function(z, proj.in, proj.out) {
  z.pt <- SpatialPoints(coords=matrix(z, ncol=2), proj4string=proj.in)
  w.pt <- spTransform(z.pt, CRS=proj.out)
  return(w.pt@coords[1, ])
}
r <- tissot(130, 54, prj,                # Longitude, latitude, and reprojection function
       proj.in=CRS("+init=epsg:4267"),   # NAD 27
       proj.out=CRS("+init=esri:54030")) # World Robinson projection

i <- indicatrix(r, scale=10^4, n=71)
plot(i$outline, type="n", asp=1, xlab="Easting", ylab="Northing")
polygon(i$base, col=rgb(0, 0, 0, .025), border="Gray")
lines(i$d.lambda, lwd=2, col="Gray", lty=2)
lines(i$d.phi, lwd=2, col=rgb(.25, .7, .25), lty=2)
lines(i$axis.major, lwd=2, col=rgb(.25, .25, .7))
lines(i$axis.minor, lwd=2, col=rgb(.7, .25, .25))
lines(i$outline, asp=1, lwd=2)
whuber
quelle