Betrachten Sie den folgenden R-Code:
> data <- data.frame(
a=c(NA,2,3,4,5,6),b=c(2.2,NA,6.1,8.3,10.2,12.13),c=c(4.2,7.9,NA,16.1,19.9,23))
> data
a b c
1 NA 2.20 4.2
2 2 NA 7.9
3 3 6.10 NA
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
Wie Sie sehen, habe ich die Daten so konstruiert, dass sie ungefähr so sind c = 2*b = 4*a
. Als solches würde ich erwarten, dass die fehlenden Werte vorhanden sind a=1, b=2, c=12
. Also habe ich die Analyse durchgeführt:
> imp <- mi(data)
Beginning Multiple Imputation ( Sat Oct 18 03:02:41 2014 ):
Iteration 1
Chain 1 : a* b* c*
Chain 2 : a* b* c*
Chain 3 : a* b* c*
Iteration 2
Chain 1 : a* b c
Chain 2 : a* b* c*
Chain 3 : a b* c
Iteration 3
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a* b* c*
Iteration 4
Chain 1 : a b c
Chain 2 : a b* c
Chain 3 : a* b c
Iteration 5
Chain 1 : a b c*
Chain 2 : a b* c
Chain 3 : a b* c
Iteration 6
Chain 1 : a* b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 7
Chain 1 : a b c
Chain 2 : a b* c
Chain 3 : a b c*
Iteration 8
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b* c*
Iteration 9
Chain 1 : a b c
Chain 2 : a b c*
Chain 3 : a b c
Iteration 10
Chain 1 : a b* c
Chain 2 : a b c
Chain 3 : a b c
Iteration 11
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 12
Chain 1 : a b c
Chain 2 : a* b c
Chain 3 : a b c
Iteration 13
Chain 1 : a b c
Chain 2 : a b c*
Chain 3 : a b c*
Iteration 14
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 15
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c*
Iteration 16
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b* c
Iteration 17
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 18
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 19
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c*
Iteration 20
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 21
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 22
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 23
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 24
Chain 1 : a b c*
Chain 2 : a b c
Chain 3 : a b c
Iteration 25
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 26
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 27
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 28
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 29
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
mi converged ( Sat Oct 18 03:02:45 2014 )
Run 20 more iterations to mitigate the influence of the noise...
Beginning Multiple Imputation ( Sat Oct 18 03:02:45 2014 ):
Iteration 1
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 2
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 3
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 4
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 5
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 6
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 7
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 8
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 9
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 10
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 11
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 12
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 13
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 14
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 15
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 16
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 17
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 18
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 19
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Iteration 20
Chain 1 : a b c
Chain 2 : a b c
Chain 3 : a b c
Reached the maximum iteration, mi did not converge ( Sat Oct 18 03:02:48 2014 )
Und schließlich beobachtete der fertige Datensatz:
> mi.completed(imp)
[[1]]
a b c
1 2 2.20 4.2
2 2 2.20 7.9
3 3 6.10 16.1
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
[[2]]
a b c
1 2 2.20 4.2
2 2 6.10 7.9
3 3 6.10 7.9
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
[[3]]
a b c
1 2 2.20 4.2
2 2 2.20 7.9
3 3 6.10 7.9
4 4 8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0
Wie Sie sehen können, entsprechen die unterstellten Werte nicht meinen Erwartungen. Tatsächlich sehen sie wie das Ergebnis einer einzelnen Imputation aus, da die fehlenden Werte scheinbar aus benachbarten Datensätzen stammen.
Was vermisse ich?
Ich sollte beachten, dass mein "Wissen" in Statistik größtenteils auf das beschränkt ist, woran ich mich vage aus einem Einführungskurs erinnere, den ich vor ~ 14 Jahren belegt habe. Ich suche nur nach einem einfachen Weg, um fehlende Werte zu unterstellen. Es muss nicht der optimierteste sein, aber es muss einen Sinn ergeben (den ich aus diesen Ergebnissen nicht machen kann). Es kann durchaus sein, dass dies mi
nicht der richtige Ansatz ist, um das zu erreichen, was ich will (vielleicht sollte vorhergesagt werden, dass stattdessen verwendet werden sollte), daher bin ich offen für Vorschläge.
Ich habe auch einen ähnlichen Ansatz versucht mice
, der zu ähnlichen Ergebnissen führte.
UPDATE Amelia funktioniert sofort. Wäre trotzdem interessant zu wissen, was mir bei mi / Mäusen fehlt.
> mi.completed(imp) [[1]] a b c 1 0.289 2.20 4.2 2 2.000 2.57 7.9 3 3.000 6.10 12.7 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[2]] a b c 1 0.603 2.20 4.2 2 2.000 5.82 7.9 3 3.000 6.10 13.4 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[3]] a b c 1 1.05 2.20 4.2 2 2.00 4.18 7.9 3 3.00 6.10 12.0 4 4.00 8.30 16.1 5 5.00 10.20 19.9 6 6.00 12.13 23.0
Entschuldigung für die Formatierung, aber ich denke, das ist das Beste, was ich in einem Kommentar tun kann.x
/2x
/4x
Antworten:
Da Sie sechs Fälle [Datensätze] und drei Variablen verwenden, ist die Qualität Ihrer Imputation recht gering.
Daher erhöht im Allgemeinen eine Erhöhung der Anzahl von Fällen (oder genauer gesagt eine Verringerung des Anteils fehlender Werte) die Imputationsqualität.
Im Allgemeinen erhöht das Erhöhen der Anzahl der in einem Datensatz verfügbaren Variablen die Imputationsqualität, solange diese zusätzlichen Variablen über die fehlenden Werte informieren.
Verweise
Rubin, DB (1996). Multiple Imputation nach 18+ Jahren. Journal of the American Statistical Association , 91, 473-489.
Schafer, JL (1999). Multiple Imputation: Ein Primer. Statistische Methoden in der medizinischen Forschung , 8, 3-15.
quelle