Die Unterscheidung zwischen streng zufälligen Variablen (die als solche modelliert werden sollten) und nicht zufälligen Variablen, von denen einige argumentieren, dass sie als zufällig modelliert werden könnten, wenn es sich um ein hierarchisches / mehrstufiges Modell handelt, ist für mich verschwommen.
Bates und Bolker veranschaulichen zufällige Effekte mit Fällen echter Zufälligkeit, z. B. die Qualität von Produkten in zufällig ausgewählten Stichproben. Obwohl ihre lme4
Arbeit unglaublich ist, ist es immer noch etwas unklar, wo die Grenze zwischen zufällig und nicht zufällig liegt. Diskussionen in den Sozialwissenschaften machen dies noch verschwommener. Mehrebenen- / Hierarchiemodelle und Zufallseffektmodelle sind rechnerisch gleich. lme4
Wo ziehen wir also die Grenze?
Zum Beispiel habe ich einen Datensatz mit wiederholten Messungen an mehreren Personen (das ist zufällig!), Aber ich glaube und ergebe lme4
, dass ein großer Teil der Varianz in ihren sozioökonomischen Variablen (wie Lebensraum, Rasse usw.) liegt. Diese Variablen sind nicht zufällig, aber Mehrebenenmodelle argumentieren, dass diese als solche verwendet werden könnten. Andere Beispiele stammen aus Studien mit Schülerklassen, in denen Schüler normalerweise in Lehrern und weiter in Schulen eingebettet sind. Alle diese Variablen sind konstant.
Können wir nicht zufällige Faktoren als zufällig modellieren, wenn dies im Bereich mehrstufiger (hierarchischer) Modelle plausibel ist?
quelle
Antworten:
Ihre Frage verwirrt mich. Ich weiß, dass Sie sagen, Sie verstehen feste oder zufällige Effekte, aber vielleicht verstehen Sie sie nicht so wie ich. Ich habe hier einen ziemlich erweiterten Auszug aus einem Buchkapitel in der Presse veröffentlicht , der meine Ansicht erklärt (ziemlich pragmatisch, ziemlich eng mit der von Andrew Gelman abgestimmt).
Direktere Beantwortung der Frage:
Es kann Klarheit schaffen, zwischen Gruppierungsvariablen (die kategorisch sein müssen), die die Gruppen darstellen, über die sich die Dinge unterscheiden, und Effekten zu unterscheiden , die die Unterschiede in einigen Parametern / Effekten darstellen (normalerweise der Achsenabschnitt, aber möglicherweise die Auswirkungen des Einkommens /). Bildung / was auch immer) über die Ebenen einer Gruppierungsvariablen.
Update : Ich werde mir erlauben, Ihrem einen Kontrapunkt zu geben
Ich bin mir nicht sicher, was das bedeutet. Sie wissen, aus welcher Nachbarschaft jede Beobachtung kommt, oder? Wie ist das "unbeobachtet"? (Wenn Sie den Verdacht hatten, dass sich Ihre Daten aufgrund nicht beobachteter Faktoren gruppieren , müssten Sie ein diskretes Mischungsmodell anpassen .) Wenn Sie damit meinen, dass Sie nicht wissen, warum Nachbarschaften unterschiedlich sind, denke ich, dass dies hier nicht wichtig ist.
Der einzige Grund , warum ich denken kann , nicht Nachbarschaft als Zufallseffekt zu verwenden wäre, wenn Sie nur eine kleine Anzahl (sagen wir <6) von Nachbarschaften gemessen hatte.
quelle