Was ist aus der Autokorrelationsfunktion einer Zeitreihe zu lesen?

11

Bei einer gegebenen Zeitreihe kann man die Autokorrelationsfunktion schätzen und grafisch darstellen, zum Beispiel wie folgt:

Die Zeitreihe

ACF

Was kann man dann aus dieser Autokorrelationsfunktion über die Zeitreihen lesen? Kann man zum Beispiel über die Stationarität der Zeitreihen nachdenken?

Bearbeitet : Hier habe ich den ACF der differenzierten Serie mit mehr Verzögerungen aufgenommen

ACF nach Differenzierung

utdiscant
quelle
1
Könnte es hilfreich sein, den ACF auf größere Verzögerungen, vielleicht einige hundert, zu planen?
Onestop
Wie definieren Sie die Stabilität der Zeitreihen?
mpiktas
1
Meinten Sie vielleicht Stationarität ?
Kardinal
Ja, ich meinte Stationarität.
utdiscant

Antworten:

3

Dieser ACF deutet auf eine Nichtstationarität hin, die durch Einbeziehung eines täglichen Effekts behoben werden könnte, da dies die Struktur bei Verzögerung 24 zu belegen scheint. Der tägliche Effekt könnte entweder automatisch regressiv für Ordnung 24 sein oder deterministisch, wenn 23-Stunden-Dummies erforderlich sein könnten. Sie können beides ausprobieren und die Ergebnisse bewerten. Eine weitere Struktur scheint erforderlich zu sein. Dies könnte entweder die Notwendigkeit sein, Pegelverschiebungen oder irgendeine Form einer kurzfristigen automatisch regressiven Struktur wie einen differenzierenden Operator von Verzögerung 1 einzubeziehen. Nach dem Identifizieren und Schätzen eines nützlichen Modus könnten die Residuen weitere Maßnahmen (Modellerweiterung) vorschlagen, um dies sicherzustellen Das Signal hat alle Informationen vollständig extrahiert und einen normalen oder Gaußschen Rauschprozess ausgeführt. Dies wird dann Ihre vage Frage bezüglich "Stabilität" beantworten. Hoffe das hilft !

Eine kleine Ergänzung!

Das Wort "schlägt vor" wird verwendet, da der ACF nicht das letzte Wort ist, während die tatsächlichen Daten vorliegen. In Abwesenheit der tatsächlichen Daten ist der ACF manchmal nützlich, um den Prozess zu charakterisieren.

IrishStat
quelle
2
Ich denke, die Zeitreihen-Handlung macht ziemlich deutlich, dass die Nichtstationarität durch nichts in der Größenordnung von 24 Verzögerungen behoben werden kann. Ich vermute, dass die "Struktur", die Sie bei etwa 24 Verzögerungen sehen, tatsächlich die Hochfrequenzschwingungen sind, die auch im ersten Diagramm sehr deutlich werden. In der Tat habe ich als grobe Schätzung die sichtbaren Täler zwischen Index 3500 und 4000 gezählt und sehe 20 davon. Wenn sich ein einfacher Lag-1-Unterschied darum kümmern würde, würden Sie wahrscheinlich einen ziemlich ausgeprägten 1 / f-ähnlichen Abfall in den ACF-Koeffizienten sehen. Für mich sieht es nicht sofort so aus, aber es sind nur sehr wenige Verzögerungen eingezeichnet.
Kardinal
: cardinal Was Sie sagen, könnte richtig sein. Die tatsächlichen Daten würden helfen, das zugrunde liegende Signal zu bewerten. Ich habe keinen Zugriff auf ein Datenbereinigungsprogramm, obwohl ich einige andere Poster gesehen habe, die darauf verweisen. Möglicherweise könnten die tatsächlichen Daten veröffentlicht werden oder ein Verweis auf ein Daten- / Bildschirmbereinigungsprogramm, das dies durchgeführt hat.
IrishStat
1
Warum den ACF analysieren, bevor die Serie differenziert wird? Ist das nicht fast universelle Praxis, wenn es einen klaren Trend gibt?
Rolando2
: Rolando Der Grund, warum ich den ACF analysiert oder kommentiert habe, ist, dass das OP dies wollte. Ich stimme Ihrer Bemerkung zu, dass Sie sich möglicherweise mit der "Beständigkeit des ACF" befassen möchten, indem Sie die offensichtliche Nichtstationarität beseitigen. Das richtige Mittel muss nicht unbedingt unterschiedlich sein, siehe insead.edu/facultyresearch/research/doc.cfm?did=46900 . Sie können einfach eine Zeitreihe simulieren, die eine oder mehrere "drastische" Änderungen im Mittelwert aufweist, ansonsten aber zufällig ist. Studieren Sie die ACF und werden Sie feststellen, dass es ein falscher Beweis dafür ist, dass man die Serie unterscheiden muss, um eine stationäre Serie zu erhalten.
IrishStat
1
@IrishStat: Danke für deinen Kommentar. Das Papier, auf das Sie verwiesen haben, scheint mit der überwiegenden Mehrheit der Zeitreihenliteratur im Widerspruch zu stehen. Es scheint von 1995 zu sein; Wie wurde es empfangen? Es ist als "Arbeitspapier" gekennzeichnet; Wurde es jemals einer Peer-Review unterzogen?
Rolando2