Das Training nach 15 Epochen mit dem CIFAR-10-Datensatz scheint den Validierungsverlust nicht mehr zu verringern und liegt bei 1,4 (mit einer Validierungsgenauigkeit von 60%). Ich habe das Trainingsset gemischt, durch 255 geteilt und als float32 importiert. Ich habe zahlreiche Architekturen ausprobiert, sowohl mit als auch ohne Ausfall in den Conv2D-Ebenen, und nichts scheint zu funktionieren. Dieselbe Architektur erreicht eine Genauigkeit von 99,7% bei Testsätzen für MNIST. Bitte beachten Sie die Architektur unten:
(Hinweis: Ich habe versucht, die Ausfallrate zu erhöhen und die Lernrate des Adam-Optimierers zu erhöhen / zu verringern, um eine Überanpassung zu verhindern. Dies verhindert lediglich eine Überanpassung, wobei jedoch sowohl das Training als auch der Testsatz jetzt eine ähnlich niedrige Genauigkeit von etwa 60% aufweisen.)
with tf.device('/gpu:0'):
tf.placeholder(tf.float32, shape=(None, 20, 64))
#placeholder initialized (pick /cpu:0 or /gpu:0)
seed = 6
np.random.seed(seed)
modelnn = Sequential()
neurons = x_train_reduced.shape[1:]
modelnn.add(Convolution2D(32, 3, 3, input_shape=neurons, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(32, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
#modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
#modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
#modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Flatten())
#modelnn.add(Dropout(0.5))
modelnn.add(Dense(1024, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(Dropout(0.5))
modelnn.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(Dropout(0.5))
modelnn.add(Dense(10, activation='softmax'))
modelnn.compile(loss='categorical_crossentropy', optimizer=optimizer_input, metrics=['accuracy'])
y_train = to_categorical(y_train)
modelnn.fit(x_train_reduced, y_train, nb_epoch=nb_epoch_count, shuffle=True, batch_size=bsize,
validation_split=0.1)
Ergebnisse:
44100/44100 [==============================] - 22s - loss: 2.1453 - acc: 0.2010 - val_loss: 1.9812 - val_acc: 0.2959
Epoch 2/50
44100/44100 [==============================] - 24s - loss: 1.9486 - acc: 0.3089 - val_loss: 1.8685 - val_acc: 0.3567
Epoch 3/50
44100/44100 [==============================] - 18s - loss: 1.8599 - acc: 0.3575 - val_loss: 1.7822 - val_acc: 0.3982
Epoch 4/50
44100/44100 [==============================] - 18s - loss: 1.7925 - acc: 0.3933 - val_loss: 1.7272 - val_acc: 0.4229
Epoch 5/50
44100/44100 [==============================] - 18s - loss: 1.7425 - acc: 0.4195 - val_loss: 1.6806 - val_acc: 0.4459
Epoch 6/50
44100/44100 [==============================] - 18s - loss: 1.6998 - acc: 0.4440 - val_loss: 1.6436 - val_acc: 0.4682
Epoch 7/50
44100/44100 [==============================] - 18s - loss: 1.6636 - acc: 0.4603 - val_loss: 1.6156 - val_acc: 0.4837
Epoch 8/50
44100/44100 [==============================] - 18s - loss: 1.6333 - acc: 0.4781 - val_loss: 1.6351 - val_acc: 0.4776
Epoch 9/50
44100/44100 [==============================] - 18s - loss: 1.6086 - acc: 0.4898 - val_loss: 1.5732 - val_acc: 0.5063
Epoch 10/50
44100/44100 [==============================] - 18s - loss: 1.5776 - acc: 0.5065 - val_loss: 1.5411 - val_acc: 0.5227
Epoch 11/50
44100/44100 [==============================] - 18s - loss: 1.5585 - acc: 0.5145 - val_loss: 1.5485 - val_acc: 0.5212
Epoch 12/50
44100/44100 [==============================] - 18s - loss: 1.5321 - acc: 0.5288 - val_loss: 1.5354 - val_acc: 0.5316
Epoch 13/50
44100/44100 [==============================] - 18s - loss: 1.5082 - acc: 0.5402 - val_loss: 1.5022 - val_acc: 0.5427
Epoch 14/50
44100/44100 [==============================] - 18s - loss: 1.4945 - acc: 0.5438 - val_loss: 1.4916 - val_acc: 0.5490
Epoch 15/50
44100/44100 [==============================] - 192s - loss: 1.4762 - acc: 0.5535 - val_loss: 1.5159 - val_acc: 0.5394
Epoch 16/50
44100/44100 [==============================] - 18s - loss: 1.4577 - acc: 0.5620 - val_loss: 1.5389 - val_acc: 0.5257
Epoch 17/50
44100/44100 [==============================] - 18s - loss: 1.4425 - acc: 0.5671 - val_loss: 1.4590 - val_acc: 0.5667
Epoch 18/50
44100/44100 [==============================] - 18s - loss: 1.4258 - acc: 0.5766 - val_loss: 1.4552 - val_acc: 0.5763
Epoch 19/50
44100/44100 [==============================] - 18s - loss: 1.4113 - acc: 0.5805 - val_loss: 1.4439 - val_acc: 0.5767
Epoch 20/50
44100/44100 [==============================] - 18s - loss: 1.3971 - acc: 0.5879 - val_loss: 1.4473 - val_acc: 0.5769
Epoch 21/50
44100/44100 [==============================] - 18s - loss: 1.3850 - acc: 0.5919 - val_loss: 1.4251 - val_acc: 0.5871
Epoch 22/50
44100/44100 [==============================] - 18s - loss: 1.3668 - acc: 0.6006 - val_loss: 1.4203 - val_acc: 0.5910
Epoch 23/50
44100/44100 [==============================] - 18s - loss: 1.3549 - acc: 0.6051 - val_loss: 1.4207 - val_acc: 0.5939
Epoch 24/50
44100/44100 [==============================] - 18s - loss: 1.3373 - acc: 0.6111 - val_loss: 1.4516 - val_acc: 0.5784
Epoch 25/50
44100/44100 [==============================] - 18s - loss: 1.3285 - acc: 0.6149 - val_loss: 1.4146 - val_acc: 0.5922
Epoch 26/50
44100/44100 [==============================] - 18s - loss: 1.3134 - acc: 0.6205 - val_loss: 1.4090 - val_acc: 0.6024
Epoch 27/50
44100/44100 [==============================] - 18s - loss: 1.3043 - acc: 0.6239 - val_loss: 1.4307 - val_acc: 0.5959
Epoch 28/50
44100/44100 [==============================] - 18s - loss: 1.2862 - acc: 0.6297 - val_loss: 1.4241 - val_acc: 0.5978
Epoch 29/50
44100/44100 [==============================] - 18s - loss: 1.2706 - acc: 0.6340 - val_loss: 1.4046 - val_acc: 0.6067
Epoch 30/50
44100/44100 [==============================] - 18s - loss: 1.2634 - acc: 0.6405 - val_loss: 1.4120 - val_acc: 0.6037
Epoch 31/50
44100/44100 [==============================] - 18s - loss: 1.2473 - acc: 0.6446 - val_loss: 1.4067 - val_acc: 0.6045
Epoch 32/50
44100/44100 [==============================] - 18s - loss: 1.2411 - acc: 0.6471 - val_loss: 1.4083 - val_acc: 0.6098
Epoch 33/50
44100/44100 [==============================] - 18s - loss: 1.2241 - acc: 0.6498 - val_loss: 1.4091 - val_acc: 0.6076
Epoch 34/50
44100/44100 [==============================] - 18s - loss: 1.2121 - acc: 0.6541 - val_loss: 1.4209 - val_acc: 0.6127
Epoch 35/50
44100/44100 [==============================] - 18s - loss: 1.1995 - acc: 0.6582 - val_loss: 1.4230 - val_acc: 0.6131
Epoch 36/50
44100/44100 [==============================] - 18s - loss: 1.1884 - acc: 0.6622 - val_loss: 1.4024 - val_acc: 0.6124
Epoch 37/50
44100/44100 [==============================] - 18s - loss: 1.1778 - acc: 0.6657 - val_loss: 1.4328 - val_acc: 0.6080
Epoch 38/50
44100/44100 [==============================] - 18s - loss: 1.1612 - acc: 0.6683 - val_loss: 1.4246 - val_acc: 0.6159
Epoch 39/50
44100/44100 [==============================] - 18s - loss: 1.1466 - acc: 0.6735 - val_loss: 1.4282 - val_acc: 0.6122
Epoch 40/50
44100/44100 [==============================] - 18s - loss: 1.1325 - acc: 0.6783 - val_loss: 1.4311 - val_acc: 0.6157
Epoch 41/50
44100/44100 [==============================] - 18s - loss: 1.1213 - acc: 0.6806 - val_loss: 1.4647 - val_acc: 0.6047
Epoch 42/50
44100/44100 [==============================] - 18s - loss: 1.1064 - acc: 0.6842 - val_loss: 1.4631 - val_acc: 0.6047
Epoch 43/50
44100/44100 [==============================] - 18s - loss: 1.0967 - acc: 0.6870 - val_loss: 1.4535 - val_acc: 0.6106
Epoch 44/50
44100/44100 [==============================] - 18s - loss: 1.0822 - acc: 0.6893 - val_loss: 1.4532 - val_acc: 0.6149
Epoch 45/50
44100/44100 [==============================] - 18s - loss: 1.0659 - acc: 0.6941 - val_loss: 1.4691 - val_acc: 0.6108
Epoch 46/50
44100/44100 [==============================] - 18s - loss: 1.0610 - acc: 0.6956 - val_loss: 1.4751 - val_acc: 0.6106
Epoch 47/50
44100/44100 [==============================] - 18s - loss: 1.0397 - acc: 0.6981 - val_loss: 1.4857 - val_acc: 0.6041
Epoch 48/50
44100/44100 [==============================] - 18s - loss: 1.0208 - acc: 0.7039 - val_loss: 1.4901 - val_acc: 0.6106
Epoch 49/50
44100/44100 [==============================] - 18s - loss: 1.0187 - acc: 0.7036 - val_loss: 1.4994 - val_acc: 0.6106
Epoch 50/50
44100/44100 [==============================] - 18s - loss: 1.0024 - acc: 0.7070 - val_loss: 1.5078 - val_acc: 0.6039
Time: 1109.7512991428375
Neural Network now trained from dimensions (49000, 3, 32, 32)
Update: Weitere Tests einschließlich BatchNormalization mit und ohne MaxNorm -
Neue Architektur:
modelnn.add(Convolution2D(32, 3, 3, input_shape=neurons, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(32, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(BatchNormalization())
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
# modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
# modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
# modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Flatten())
modelnn.add(Dense(1024, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.5))
modelnn.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.5))
modelnn.add(Dense(10, activation='softmax'))
quelle
Betrachtet man Ihre Verlust- und Genauigkeitswerte innerhalb und außerhalb der Stichprobe, so ist Ihr Modell derzeit unterausgestattet, verbessert sich jedoch monoton. Mit anderen Worten, es scheint, als würde dies für mehr Epochen zu einer höheren Vorhersageleistung / weniger Entropieverlust führen.
Sie verwenden eine stark regulierte Architektur (Drop-Out-Layer), was nicht schlecht ist. Es ist jedoch auch nicht verwunderlich, dass das Training viel länger dauert als ohne Regularisierung. Aufgrund der Ausfallschichten ist es unwahrscheinlich, dass Sie (erheblich) überanpassen.
Dinge, die Sie versuchen können, um das Lernen zu beschleunigen:
ich. Passen Sie die Lernrate an: Beginnen Sie z. B. mit einer kleinen, wandern Sie sie in der Mitte nach oben und senken Sie sie gegen Ende wieder ab.
ii. Batch- Normalisierung hinzufügen : In der obigen Architektur können Sie Batch-Norm sowohl in Ihre Faltungsblöcke als auch in dichte Schichten aufnehmen. Normalerweise wird die Batch-Norm-Schicht nach der nichtlinearen Aktivierung, jedoch vor dem Ausfall hinzugefügt. Ich bin mir nicht sicher, wie gut Batch-Norm mit Maxnorm spielt. Für Ihre dichten Schichten würde ich Batch-Norm + Dropuout mit / ohne Maxnorm versuchen. Ich habe das Gefühl, Sie brauchen kein Maxnorm, wenn Sie die Chargennormalisierung anwenden.
iii. Stapelgröße erhöhen: Ich bin nicht sicher, wie groß Ihr Stapel ist und ob Sie eine GPU besitzen. Wenn Sie eine GPU haben, sollten Sie wahrscheinlich versuchen, Ihre Stapelgröße in Multiplikativen von 32 zu maximieren.
Um sicherzustellen, dass Ihre Daten "lernbar" / nicht beschädigt sind (z. B. wenn Sie nicht unfreiwillig eine Transformation angewendet haben, um sie zu verzerren), würde ich alle Regularisierungen aus Ihrer Architektur entfernen, Schulungen durchführen und sicherstellen, dass Sie sich an das Trainingsset anpassen können . Wenn Sie Trainingsdaten erfolgreich lernen können, ist der Rest eine Generalisierungsübung. Wenn Sie sich auch ohne Regularisierung nicht übermäßig an Trainingsdaten anpassen können, benötigt Ihr Modell höchstwahrscheinlich mehr Kapazität (tiefere und umfassendere Architektur).
quelle
Ich habe dies heute ausprobiert und konnte durchweg eine Testgenauigkeit von fast 75-80% erreichen.
Die Gesamtzahl der verwendeten Parameter war:
183,242
Sie können es besser machen, indem Sie vielleicht ein paar weitere Ebenen hinzufügen, aber Sie müssen nicht übermäßig sein. Komplexere Netzwerke führen nicht immer zu besseren Ergebnissen.
Vorschläge
Mein Vorschlag an Sie ist, dass Sie Ihre Architektur einfach halten. Folgen Sie Occams Rasiermesser , einfach ist besser.
Skalieren Sie Ihre Daten
Verwenden Sie keinen zufälligen Samen
Verwenden Sie einen geeigneten Optimierer. Ich habe Adadelta wie von Keras verwendet.
CNNs müssen nicht verschlungen werden. halte es einfach
Tiefere, dünnere Netzwerke funktionieren manchmal besser als breitere
Regularisierung verwenden (zB Dropout)
Unten ist mein Code (mit Keras)
quelle