Kürzlich habe ich über tiefes Lernen gelesen und ich bin verwirrt über die Begriffe (oder sagen wir Technologien). Was ist der Unterschied zwischen Faltungsneurale Netze (CNN), Eingeschränkte Boltzmann-Maschinen (RBM) und Auto-Encoder?
Faltungsneurale Netze sind eine Art neuronales Netz, in dem nur Teilmengen möglicher Verbindungen zwischen Schichten existieren, um überlappende Regionen zu erzeugen. Sie werden häufig für visuelle Aufgaben verwendet.
Kürzlich habe ich über tiefes Lernen gelesen und ich bin verwirrt über die Begriffe (oder sagen wir Technologien). Was ist der Unterschied zwischen Faltungsneurale Netze (CNN), Eingeschränkte Boltzmann-Maschinen (RBM) und Auto-Encoder?
Ich mache gerade das Udacity Deep Learning Tutorial. In Lektion 3 sprechen sie über eine 1x1-Faltung. Diese 1x1-Faltung wird im Google Inception-Modul verwendet. Ich habe Probleme zu verstehen, was eine 1x1-Faltung ist. Ich habe auch diesen Beitrag von Yann Lecun gesehen. Könnte mir das bitte...
In den letzten Jahren sind neuronale Faltungsnetze (oder vielleicht auch tiefe neuronale Netze im Allgemeinen) immer tiefer geworden, wobei die Netze auf dem neuesten Stand der Technik von 7 Schichten ( AlexNet ) auf 1000 Schichten ( Residual Nets) innerhalb von 4 Schichten übergegangen sind Jahre....
Kann jemand erklären, was eine globale Max-Pooling- Schicht ist und warum und wann wir sie zum Trainieren eines neuronalen Netzwerks verwenden. Haben sie einen Vorteil gegenüber einer gewöhnlichen
In den letzten Jahren sind Convolutional Neural Networks (CNNs) zum Stand der Technik für die Objekterkennung in der Computersicht geworden. Typischerweise besteht ein CNN aus mehreren Faltungsschichten, gefolgt von zwei vollständig verbundenen Schichten. Eine Intuition dahinter ist, dass die...
Ich versuche den Faltungsteil von neuronalen Faltungsnetzen zu verstehen. Betrachten Sie die folgende Abbildung: Ich habe keine Probleme, die erste Faltungsschicht zu verstehen, in der wir 4 verschiedene Kernel (mit der Größe ) haben, die wir mit dem Eingabebild falten, um 4 Merkmalskarten zu...
Ich habe festgestellt, dass Imagenet und andere große CNN lokale Antwortnormalisierungsschichten verwenden. Ich kann jedoch nicht so viele Informationen über sie finden. Wie wichtig sind sie und wann sollten sie angewendet werden? Von
Was ist der Unterschied zwischen den Begriffen "Kernel" und "Filter" im Kontext von
Ich habe noch keinen Computer Vision Hintergrund. Wenn ich jedoch Artikel und Artikel über Bildverarbeitung und Faltungsneuralnetze lese, stelle ich mich ständig dem Begriff translation invariance, oder translation invariant. Oder ich habe viel gelesen, dass die Faltungsoperation bietet...
Ich erstelle ein Convolutional Neural Network (CNN), bei dem auf eine Convolutional Layer eine Pooling Layer folgt und ich Dropout anwenden möchte, um die Überanpassung zu reduzieren. Ich habe das Gefühl, dass die Dropout-Schicht nach der Pooling-Schicht aufgetragen werden sollte, aber ich habe...
Hat jemand Literatur über Pre-Training in Deep Convolutional Neural Network gesehen? Ich habe nur unbeaufsichtigtes Pre-Training in Autoencoder oder eingeschränkten Boltzman-Maschinen
Ich habe an einem Regressionsproblem gearbeitet, bei dem die Eingabe ein Bild und die Bezeichnung ein kontinuierlicher Wert zwischen 80 und 350 ist. Bei den Bildern handelt es sich um einige Chemikalien, nachdem eine Reaktion stattgefunden hat. Die Farbe, die angezeigt wird, gibt die Konzentration...
Intro Hintergrund In einem neuronalen Faltungsnetz haben wir normalerweise eine allgemeine Struktur / einen Fluss, der so aussieht: Eingabebild (dh ein 2D-Vektor x) (Die erste Faltungsschicht (Conv1) beginnt hier ...) Falten Sie eine Reihe von Filtern ( w1) entlang des 2D-Bildes (dh führen Sie die...
Ich habe die Abhandlung ImageNet Classification with Deep Convolutional Neural Networks gelesen und in Abschnitt 3 wurde die Architektur ihres Convolutional Neural Network erläutert, wie sie es vorzogen: nicht sättigende Nichtlinearitätf(x)=max(0,x).f(x)=max(0,x).f(x) = max(0, x). weil es...
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3),...
Mir ist nicht klar, warum wir das Bild für CNN durch (image - mean_image) normalisieren? Vielen
Wenn ich GAM verwende, erhalte ich einen DF-Rest von (letzte Zeile im Code). Was bedeutet das? Über das GAM-Beispiel hinausgehend: Kann die Anzahl der Freiheitsgrade im Allgemeinen eine nicht ganzzahlige Zahl sein?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call:...
Ich trainiere ein einfaches neuronales Netzwerk mit dem CIFAR10-Datensatz. Nach einiger Zeit begann der Validierungsverlust zuzunehmen, während die Validierungsgenauigkeit ebenfalls zunahm. Der Testverlust und die Testgenauigkeit verbessern sich weiter. Wie ist das möglich? Es scheint, dass die...
Ich möchte Deep Learning in meinem Projekt einsetzen. Ich habe ein paar Artikel durchgesehen und mir ist die Frage gekommen: Gibt es einen Unterschied zwischen dem neuronalen Faltungsnetz und dem tiefen Lernen? Sind diese Dinge gleich oder haben sie größere Unterschiede und was ist...
Ich habe mich gefragt, warum es so wichtig ist, prinzipielles / theoretisches maschinelles Lernen zu haben. Aus einer persönlichen Perspektive als Mensch kann ich verstehen, warum prinzipielles maschinelles Lernen wichtig wäre: Menschen mögen es zu verstehen, was sie tun, wir finden Schönheit und...