Als «aic» getaggte Fragen

AIC steht für das Akaike Information Criterion, eine Technik, mit der das beste Modell aus einer Klasse von Modellen unter Verwendung einer bestraften Wahrscheinlichkeit ausgewählt wird. Ein kleinerer AIC impliziert ein besseres Modell.

32
AIC-Richtlinien bei der Modellauswahl

Ich benutze normalerweise BIC, da ich verstehe, dass es Parsimonie stärker schätzt als AIC. Ich habe mich jetzt jedoch für einen umfassenderen Ansatz entschieden und möchte auch AIC verwenden. Ich weiß, dass Raftery (1995) gute Richtlinien für BIC-Unterschiede vorgelegt hat: 0-2 ist schwach, 2-4...

29
Umgang mit hierarchischen / verschachtelten Daten beim maschinellen Lernen

Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3),...

23
AIC & BIC Nummerninterpretation

Ich suche Beispiele für die Interpretation von AIC-Schätzungen (Akaike-Informationskriterium) und BIC-Schätzungen (Bayes-Informationskriterium). Kann ein negativer Unterschied zwischen BICs als hintere Gewinnchance eines Modells gegenüber dem anderen interpretiert werden? Wie kann ich das in...