Könnte mir jemand die Maximum-Likelihood-Schätzung (MLE) im Detail erklären? Ich möchte das zugrunde liegende Konzept kennen, bevor ich mich mit mathematischen Ableitungen oder Gleichungen
eine Methode zum Schätzen von Parametern eines statistischen Modells durch Auswahl des Parameterwerts, der die Wahrscheinlichkeit der Beobachtung der gegebenen Stichprobe optimiert.
Könnte mir jemand die Maximum-Likelihood-Schätzung (MLE) im Detail erklären? Ich möchte das zugrunde liegende Konzept kennen, bevor ich mich mit mathematischen Ableitungen oder Gleichungen
Ich habe in der Zusammenfassung dieses Papiers gelesen, dass: "Das Maximum Likelihood (ML) -Verfahren von Hartley aud Rao wird durch Anpassen einer Transformation von Patterson und Thompson modifiziert, bei der die Wahrscheinlichkeitsrendernormalität in zwei Teile aufgeteilt wird, von denen einer...
Für eine Simulationsstudie muss ich Zufallsvariablen generieren, die eine vorab festgelegte (Populations-) Korrelation zu einer vorhandenen Variablen .Y.YY Ich sah in die RPakete copulaund CDVineder Zufall multivariate Verteilungen mit einer bestimmten Abhängigkeitsstruktur erzeugen kann. Es ist...
Maximum Likelihood Estimators (MLE) sind asymptotisch effizient; Wir sehen das praktische Ergebnis darin, dass sie selbst bei kleinen Stichprobengrößen oftmals besser abschätzen als die Momentenmethode (MoM) (wenn sie sich unterscheiden) Hier bedeutet "besser als" in dem Sinne, dass typischerweise...
Ich sehe, dass diese Begriffe verwendet werden, und ich verwechsle sie immer wieder. Gibt es eine einfache Erklärung für die Unterschiede zwischen
Auf dieser Website gibt es mehrere Themen mit Buchempfehlungen zu Einführungsstatistiken und maschinellem Lernen. Ich suche jedoch nach einem Text zu erweiterten Statistiken, der nach Priorität geordnet ist: maximale Wahrscheinlichkeit, verallgemeinerte lineare Modelle, Hauptkomponentenanalyse,...
Ok, das ist eine ziemlich grundlegende Frage, aber ich bin ein bisschen verwirrt. In meiner Diplomarbeit schreibe ich: Die Standardfehler können durch Berechnung der Umkehrung der Quadratwurzel der diagonalen Elemente der (beobachteten) Fisher-Informationsmatrix ermittelt werden:...
Bitte erläutern Sie mir den Unterschied zwischen der Bayes'schen Schätzung und der maximalen
Diese Frage hat mich lange Zeit verwirrt. Ich verstehe die Verwendung von "log" zur Maximierung der Wahrscheinlichkeit, daher frage ich nicht nach "log". Meine Frage ist, warum wir diese NLL erfunden haben, da die Maximierung der Protokollwahrscheinlichkeit der Minimierung der "negativen...
Ich frage mich, ob es einen Unterschied in der Interpretation macht, ob nur die abhängigen, sowohl die abhängigen als auch die unabhängigen Variablen oder nur die unabhängigen Variablen log-transformiert werden. Betrachten Sie den Fall von log(DV) = Intercept + B1*IV + Error Ich kann die IV als...
Ich bin neugierig auf die Natur von . Kann jemand etwas intuitives über "Was sagt Σ - 1 über Daten?"Σ−1Σ−1\Sigma^{-1}Σ−1Σ−1\Sigma^{-1} Bearbeiten: Danke für die Antworten Nach einigen großartigen Kursen möchte ich einige Punkte hinzufügen: Es ist ein Maß für Information, dh ist eine...
Steins Beispiel zeigt, dass die maximale Wahrscheinlichkeitsschätzung von normalverteilten Variablen mit den Mitteln und Varianzen (unter einer Quadratverlustfunktion) unzulässig ist, wenn f . Einen guten Beweis finden Sie im ersten Kapitel von Large-Scale Inference: Empirische Bayes-Methoden zur...
Diese Frage beschäftigt mich seit über einem Monat. In der Ausgabe der Amstat News vom Februar 2015 ist ein Artikel von Berkeley-Professor Mark van der Laan zu lesen, in dem die Leute wegen der Verwendung ungenauer Modelle beschimpft werden. Er stellt fest, dass Statistik durch die Verwendung von...
Was ist der Hauptunterschied zwischen der Schätzung der maximalen Wahrscheinlichkeit (MLE) und der Schätzung der kleinsten Quadrate (LSE)? Warum können wir MLE nicht zur Vorhersage von Werten in der linearen Regression und umgekehrt verwenden?yyy Jede Hilfe zu diesem Thema wird sehr...
Numerisch die Ableitung MLE s von GLMM schwierig ist und in der Praxis, ich weiß, wir sollten nicht Brute - Force - Optimierung verwenden (zB mit optimauf einfache Art und Weise). Aus pädagogischen Gründen möchte ich es jedoch versuchen, um sicherzustellen, dass ich das Modell richtig verstehe...
Ich habe diese Seite gelesen: http://neuralnetworksanddeeplearning.com/chap3.html und es hieß, dass Sigmoid-Ausgabeschicht mit Kreuzentropie mit Softmax-Ausgabeschicht mit Log-Wahrscheinlichkeit ziemlich ähnlich ist. Was passiert, wenn ich Sigmoid mit logarithmischer Wahrscheinlichkeit oder...
Angenommen, wir haben eine Zufallsvariable . Wenn der wahre Parameter wäre, sollte die Wahrscheinlichkeitsfunktion maximiert und die Ableitung gleich Null sein. Dies ist das Grundprinzip des Maximum-Likelihood-Schätzers.X∼f(x|θ)X∼f(x|θ)X \sim f(x|\theta)θ0θ0\theta_0 Wie ich es verstehe, ist Fisher...
Ich werde mein Problem mit einem Beispiel erklären. Angenommen, Sie möchten das Einkommen einer Person anhand einiger Attribute vorhersagen: {Alter, Geschlecht, Land, Region, Stadt}. Sie haben einen Trainingsdatensatz wie diesen train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3),...
Ich habe von Owens empirischer Wahrscheinlichkeit gehört, habe sie aber bis vor kurzem nicht beachtet, bis ich auf sie in einem Papier von Interesse gestoßen bin ( Mengersen et al. 2012 ). Um es zu verstehen, habe ich herausgefunden, dass die Wahrscheinlichkeit der beobachteten Daten als , wobei...
Man betrachte unabhängige Stichproben die aus einer Zufallsvariablen , von der angenommen wird, dass sie einer abgeschnittenen Verteilung (z. B. einer abgeschnittenen Normalverteilung ) bekannter (endlicher) Minimal- und Maximalwerte und aber unbekannter Parameter und folgen . Wenn einer nicht...