Als «lasso» getaggte Fragen

Eine Regularisierungsmethode für Regressionsmodelle, bei der die Koeffizienten gegen Null verkleinert werden und einige von ihnen gleich Null sind. Somit führt Lasso eine Merkmalsauswahl durch.

167
Wann sollte ich Lasso vs Ridge verwenden?

Angenommen, ich möchte eine große Anzahl von Parametern schätzen und einige davon benachteiligen, weil ich der Meinung bin, dass sie im Vergleich zu den anderen nur geringe Auswirkungen haben sollten. Wie entscheide ich mich für ein Strafschema? Wann ist eine Kammregression angemessener? Wann...

77
Ein Beispiel: LASSO-Regression unter Verwendung von glmnet für binäre Ergebnisse

Ich beginne mit der Verwendung von dabble glmnetmit LASSO Regression , wo mein Ergebnis von Interesse dichotomous ist. Ich habe unten einen kleinen nachgebildeten Datenrahmen erstellt: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45,...

61
Welches Problem lösen Schrumpfmethoden?

Die Weihnachtszeit hat mir die Möglichkeit gegeben, mich mit den Elementen des statistischen Lernens am Feuer zu entspannen . Aus ökonometrischer Sicht (häufig) habe ich Probleme, die Verwendung von Schrumpfungsmethoden wie Ridge Regression, Lasso und Least Angle Regression (LAR) zu verstehen....

60
Standardfehler für die Lasso-Vorhersage mit R

Ich versuche, ein LASSO-Modell für die Vorhersage zu verwenden, und ich muss Standardfehler abschätzen. Sicher hat schon jemand ein Paket dazu geschrieben. Aber meines Erachtens gibt keines der CRAN-Pakete, die mit einem LASSO Vorhersagen treffen, Standardfehler für diese Vorhersagen zurück. Meine...

52
Herleitung der Lasso-Lösung in geschlossener Form

Für das Lasso-Problem so dass . Ich sehe oft das Ergebnis der schwachen Schwelle \ beta_j ^ {\ text {lasso}} = \ mathrm {sgn} (\ beta ^ {\ text {LS}} _ j) (| \ beta_j ^ {\ text {LS}} |) - \ gamma) ^ + für den orthonormalen X- Fall. Es wird behauptet, dass die Lösung "leicht gezeigt" werden kann,...

39
Least-Angle-Regression vs. Lasso

Die Least-Angle-Regression und das Lasso tendieren dazu, sehr ähnliche Regularisierungspfade zu erzeugen (identisch, außer wenn ein Koeffizient Null überschreitet). Beide können durch praktisch identische Algorithmen effizient angepasst werden. Gibt es jemals einen praktischen Grund, eine Methode...