Ich habe einen Datensatz, in dem empirische Intuition besagt, dass ich eine wöchentliche Saisonalität erwarten sollte (dh das Verhalten am Samstag und Sonntag unterscheidet sich vom Rest der Woche). Sollte diese Prämisse wahr sein, sollte mir ein Autokorrelationsgraph nicht Bursts mit Verzögerungsmultiplikatoren von 7 geben?
Hier ist ein Beispiel der Daten:
data = TemporalData[{{{2012, 09, 28}, 19160768}, {{2012, 09, 19},
19607936}, {{2012, 09, 08}, 7867456}, {{2012, 09, 15},
11245024}, {{2012, 09, 04}, 0}, {{2012, 09, 21},
24314496}, {{2012, 09, 12}, 11233632}, {{2012, 09, 03},
9886496}, {{2012, 09, 09}, 9122272}, {{2012, 09, 24},
23103456}, {{2012, 09, 20}, 25721472}, {{2012, 09, 11},
12272160}, {{2012, 09, 25}, 21876960}, {{2012, 09, 05},
7182528}, {{2012, 09, 16}, 11754752}, {{2012, 09, 23},
23737248}, {{2012, 09, 26}, 20985984}, {{2012, 09, 10},
12123584}, {{2012, 09, 06}, 9076736}, {{2012, 09, 17},
20123328}, {{2012, 09, 18}, 20634720}, {{2012, 09, 22},
23361024}, {{2012, 09, 14}, 11804928}, {{2012, 09, 07},
9007200}, {{2012, 09, 02}, 9244192}, {{2012, 09, 13},
11335328}, {{2012, 09, 27}, 20694720}, {{2012, 10, 26},
12242112}, {{2012, 10, 15}, 10963776}, {{2012, 11, 09},
9735424}, {{2012, 10, 08}, 10078240}, {{2012, 10, 31},
10676736}, {{2012, 10, 20}, 11719840}, {{2012, 11, 05},
10475168}, {{2012, 10, 01}, 9988416}, {{2012, 10, 24},
11998688}, {{2012, 10, 12}, 10393120}, {{2012, 10, 23},
11987936}, {{2012, 10, 19}, 11165536}, {{2012, 10, 04},
9902720}, {{2012, 11, 16}, 10023648}, {{2012, 11, 21},
10047936}, {{2012, 10, 10}, 10205568}, {{2012, 11, 08},
9872832}, {{2012, 10, 21}, 12854112}, {{2012, 11, 04},
10485856}, {{2012, 10, 07}, 9565248}, {{2012, 09, 30},
9784864}, {{2012, 10, 29}, 12880064}, {{2012, 11, 10},
8945824}, {{2012, 11, 15}, 9870880}, {{2012, 09, 29},
9718080}, {{2012, 10, 18}, 10992896}, {{2012, 10, 06},
9319584}, {{2012, 11, 03}, 9077024}, {{2012, 10, 03},
10537408}, {{2012, 11, 22}, 9853216}, {{2012, 10, 11},
10191936}, {{2012, 10, 22}, 12766816}, {{2012, 11, 07},
9510624}, {{2012, 11, 14}, 9707264}, {{2012, 10, 28},
12060736}, {{2012, 11, 19}, 10946880}, {{2012, 11, 11},
9529568}, {{2012, 10, 09}, 9967680}, {{2012, 10, 17},
12093344}, {{2012, 11, 20}, 10520800}, {{2012, 10, 05},
9619136}, {{2012, 10, 25}, 11484288}, {{2012, 11, 17},
9389312}, {{2012, 10, 30}, 12078944}, {{2012, 10, 14},
9505984}, {{2012, 10, 02}, 9943648}, {{2012, 11, 24},
9458144}, {{2012, 11, 02}, 10082944}, {{2012, 11, 01},
11082912}, {{2012, 10, 13}, 9117632}, {{2012, 11, 23},
10253280}, {{2012, 11, 12}, 10240672}, {{2012, 11, 06},
9723456}, {{2012, 11, 13}, 9806880}, {{2012, 10, 16},
12368896}, {{2012, 11, 18}, 9632800}, {{2012, 10, 27}, 10606656}}]
... und der ACF:
... und die PACF:
time-series
autocorrelation
forecasting
Hugo Sereno Ferreira
quelle
quelle
Antworten:
Zunächst wird Ihre Intuition in einer vereinfachten Zeitreihe dargestellt, in der das Wochenende im ACF leicht ersichtlich ist:
Dieses erwartete ACF-Muster kann jedoch maskiert werden, wenn die Daten einen Trend aufweisen:
Eine Lösung (wenn dies ein Problem ist) besteht darin, den Trend bei der Bestimmung der Saisonalität abzuschätzen und zu steuern.
Der R-Code, der diese Diagramme erstellt hat, lautet wie folgt:
quelle