Ich analysiere einen experimentellen Datensatz. Die Daten bestehen aus einem gepaarten Vektor des Behandlungstyps und einem binomischen Ergebnis:
Treatment Outcome
A 1
B 0
C 0
D 1
A 0
...
In der Ergebnisspalte bedeutet 1 Erfolg und 0 Misserfolg. Ich möchte herausfinden, ob die Behandlung das Ergebnis erheblich variiert. Es gibt 4 verschiedene Behandlungen, wobei jedes Experiment viele Male wiederholt wird (2000 für jede Behandlung).
Meine Frage ist, kann ich das binäre Ergebnis mit ANOVA analysieren? Oder sollte ich einen Chi-Quadrat-Test verwenden, um die Binomialdaten zu überprüfen? Es scheint, als würde das Chi-Quadrat davon ausgehen, dass der Anteil gleichmäßig aufgeteilt wird, was nicht der Fall ist. Eine andere Idee wäre, die Daten anhand des Verhältnisses von Erfolgen zu Fehlern für jede Behandlung zusammenzufassen und anschließend einen Verhältnis-Test durchzuführen.
Ich bin gespannt auf Ihre Empfehlungen für Tests, die für diese Art von binomischen Erfolgs- / Misserfolgsexperimenten sinnvoll sind.
quelle
Allerdings sind einige moderne Autoren recht skeptisch der Arcussinus - Transformation, siehe zum Beispiel http://www.mun.ca/biology/dschneider/b7932/B7932Final10Dec2010.pdf Aber diese Autoren sind mit Problemen wie Vorhersage betrifft, wo sie zeigen die Arcussinus kann zu Problemen führen. Wenn Sie sich nur mit Hypothesentests befassen, sollte dies in Ordnung sein. Ein moderner Ansatz könnte eine logistische Regression verwenden.
quelle
Ich möchte mich von Ihrer Meinung zum Chi-Sq-Test unterscheiden. Dies gilt auch dann, wenn die Daten nicht binomisch sind. Es basiert auf der asymptotischen Normalität von mle (in den meisten Fällen).
Ich würde eine logistische Regression wie folgt durchführen:
woher
Ist die ANOVA gleichwertig, wenn eine Beziehung besteht oder nicht?
Ist der Test ist ein gewisser Effekt.
Ist der Test B hat einen gewissen Effekt.
Ist der Test ist C hat einen gewissen Effekt.
Jetzt können Sie weitere Kontraste erstellen, um herauszufinden, was Sie interessiert. Es ist immer noch ein Chi-Quadrat-Test, jedoch mit unterschiedlichen Freiheitsgraden (3, 1, 1 bzw. 1).
quelle
Ich denke, Sie haben Recht, dass ANOVA nicht zur Analyse binomialer abhängiger Variablen verwendet werden sollte. Viele Leute verwenden dies, um Mittelwerte der binären Antwortvariablen (0 1) zu vergleichen, aber es sollte nicht verwendet werden, da dies die Annahme von Normalität und Gleichheit der Varianz ernsthaft verletzt. Chi-Quadrat-Tests oder logistische Regression sind für diese Situationen am besten geeignet.
quelle