Ich reproduziere ein Beispiel aus verallgemeinerten, linearen und gemischten Modellen . Mein MWE ist unten:
Dilution <- c(1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4)
NoofPlates <- rep(x=5, times=10)
NoPositive <- c(0, 0, 2, 2, 3, 4, 5, 5, 5, 5)
Data <- data.frame(Dilution, NoofPlates, NoPositive)
fm1 <- glm(formula=NoPositive/NoofPlates~log(Dilution), family=binomial("logit"), data=Data)
summary(object=fm1)
Ausgabe
Call:
glm(formula = NoPositive/NoofPlates ~ log(Dilution), family = binomial("logit"),
data = Data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.38326 -0.20019 0.00871 0.15607 0.48505
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.174 2.800 1.491 0.136
log(Dilution) 1.623 1.022 1.587 0.112
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 8.24241 on 9 degrees of freedom
Residual deviance: 0.64658 on 8 degrees of freedom
AIC: 6.8563
Number of Fisher Scoring iterations: 6
Code
anova(object=fm1, test="Chisq")
Ausgabe
Analysis of Deviance Table
Model: binomial, link: logit
Response: NoPositive/NoofPlates
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 9 8.2424
log(Dilution) 1 7.5958 8 0.6466 0.00585 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Code
library(aod)
wald.test(b=coef(object=fm1), Sigma=vcov(object=fm1), Terms=2)
Ausgabe
Wald test:
----------
Chi-squared test:
X2 = 2.5, df = 1, P(> X2) = 0.11
Die geschätzten Koeffizienten stimmen perfekt mit den im Buch angegebenen Ergebnissen überein, aber die SEs liegen weit auseinander. Basierend auf dem LRT-Test ist die Steigung signifikant, aber basierend auf dem Wald- und Z-Test ist der Steigungskoeffizient unbedeutend. Ich frage mich, ob ich etwas Grundlegendes vermisse. Vielen Dank im Voraus für Ihre Hilfe.
r
logistic
generalized-linear-model
likelihood-ratio
z-test
MYaseen208
quelle
quelle
Antworten:
Das Hauptproblem besteht darin, dass Sie das
weights
Argument verwenden sollten, wenn Sie das Verhältnis als Antwortvariable verwenden möchten. Sie müssen eine Warnung über "Nicht-Ganzzahl-Erfolge in einem Binomial-GLM" ignoriert haben ...Die LRT- und Wald-Testergebnisse sind immer noch sehr unterschiedlich ( Werte von gegenüber ), aber aus praktischen Gründen können wir sagen, dass sie beide sind stark signifikant ... (In diesem Fall (mit einem einzelnen Parameter) ergibt sich genau der gleiche p-Wert wie .)p 4×10−4 7×10−10
aod::wald.test()
summary()
Die Wald-Profil-Konfidenzintervalle sind ebenfalls mäßig unterschiedlich, aber ob CIs [unten gezeigt] von (0,7,2,5) (Wald) und (0,9, 2,75) (LRT) praktisch unterschiedlich sind, hängt von der jeweiligen Situation ab.
Wald:
Profil:
quelle