“Entfernen Sie Ausreißer im DataFrame” Code-Antworten

Entfernen Sie Ausreißer Python Pandas

#------------------------------------------------------------------------------
# accept a dataframe, remove outliers, return cleaned data in a new dataframe
# see http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
#------------------------------------------------------------------------------
def remove_outlier(df_in, col_name):
    q1 = df_in[col_name].quantile(0.25)
    q3 = df_in[col_name].quantile(0.75)
    iqr = q3-q1 #Interquartile range
    fence_low  = q1-1.5*iqr
    fence_high = q3+1.5*iqr
    df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
    return df_out
Handsome Hawk

Entfernen Sie Ausreißer im DataFrame

# Solution is based on this article: 
# http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm

import pandas as pd
import numpy as np

def remove_outliers_from_series(series):
    q1 = series.quantile(0.25)
    q3 = series.quantile(0.75)
    intraquartile_range = q3 - q1
    fence_low  = q1 - 1.5 * intraquartile_range
    fence_high = q3 + 1.5 * intraquartile_range
    return series[(series > fence_low) & (series < fence_high)]


def remove_outliers_from_dataframe(self, df, col):
    q1 = df[col].quantile(0.25)
    q3 = df[col].quantile(0.75)
    intraquartile_range = q3 - q1
    fence_low  = q1 - 1.5 * intraquartile_range
    fence_high = q3 + 1.5 * intraquartile_range
    return df.loc[(df[col] > fence_low) & (df[col] < fence_high)]


def remove_outliers_from_np_array(self, arr):
    q1 = np.percentile(arr, 25)
    q3 = np.percentile(arr, 75)
    intraquartile_range = q3 - q1
    fence_low  = q1 - 1.5 * intraquartile_range
    fence_high = q3 + 1.5 * intraquartile_range
    return arr[(arr > fence_low) & (arr < fence_high)]


def remove_outliers_from_python_list(self, _list):
    arr = np.array(_list)
    return list(remove_outliers_from_np_array(arr))


def remove_outliers(*args, **kwargs):
        if isinstance(args[0], pd.DataFrame):
            return remove_outliers_from_dataframe(*args, **kwargs)
        elif isinstance(args[0], pd.Series):
            return remove_outliers_from_series(*args, **kwargs)
        elif isinstance(args[0], np.ndarray):
            return remove_outliers_from_np_array(*args, **kwargs)
        elif isinstance(args[0], list):
            return remove_outliers_from_python_list(*args, **kwargs)
        else:
            raise TypeError(f'{type(args[0])} is not supported.')
Wrong Whale

Ausreißerentfernung Pandas

df = pd.DataFrame(np.random.randn(100, 3))

from scipy import stats
df[(np.abs(stats.zscore(df)) < 3).all(axis=1)]
Frantic Fox

Pandas entfernen Ausreißer aus DataFrame

df[(df["col"] >= x ) & (df["col"] <= y )]

but it's more readable to use:

df[df["col"].between(x,y)]
rudythealchemist

Ähnliche Antworten wie “Entfernen Sie Ausreißer im DataFrame”

Fragen ähnlich wie “Entfernen Sie Ausreißer im DataFrame”

Weitere verwandte Antworten zu “Entfernen Sie Ausreißer im DataFrame” auf Python

Durchsuchen Sie beliebte Code-Antworten nach Sprache

Durchsuchen Sie andere Codesprachen