Fassen Sie den Text mithilfe von LED -Umarmungen zusammen
class TransformersTextSummarizer(BaseTextSummarizer):
def __init__ (self, model_key, language):
self._tokenizer = AutoTokenizer.from_pretrained(model_key)
self._language = language
self._model = AutoModelForSeq2SeqLM.from_pretrained(model_key)
self._device = 'cuda' if bool(strtobool(os.getenv('USE_GPU'))) else 'cpu'
def __chunk_text(self, text):
sentences = [ s + ' ' for s in sentence_segmentation(text, minimum_n_words_to_accept_sentence=1, language=self._language) ]
chunks = []
chunk = ''
length = 0
for sentence in sentences:
tokenized_sentence = self._tokenizer.encode(sentence, truncation=False, max_length=None, return_tensors='pt') [0]
if len(tokenized_sentence) > self._tokenizer.model_max_length:
continue
length += len(tokenized_sentence)
if length <= self._tokenizer.model_max_length:
chunk = chunk + sentence
else:
chunks.append(chunk.strip())
chunk = sentence
length = len(tokenized_sentence)
if len(chunk) > 0:
chunks.append(chunk.strip())
return chunks
def __clean_text(self, text):
if text.count('.') == 0:
return text.strip()
end_index = text.rindex('.') + 1
return text[0 : end_index].strip()
def summarize(self, text, *args, **kwargs):
chunk_texts = self.__chunk_text(text)
chunk_summaries = []
for chunk_text in chunk_texts:
input_tokenized = self._tokenizer.encode(chunk_text, return_tensors='pt')
input_tokenized = input_tokenized.to(self._device)
summary_ids = self._model.to(self._device).generate(input_tokenized, length_penalty=3.0, min_length = int(0.2 * len(chunk_text)), max_length = int(0.3 * len(chunk_text)), early_stopping=True, num_beams=5, no_repeat_ngram_size=2)
output = [self._tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in summary_ids]
chunk_summaries.append(output)
summaries = [ self.__clean_text(text) for chunk_summary in chunk_summaries for text in chunk_summary ]
return summaries
Struggling Data Scientist