Modellbewertungsfunktion

### got this awsome function from this guy ###
### https://www.kaggle.com/stoicstatic/twitter-sentiment-analysis-for-beginners ###

def model_Evaluate(model):
    
    # Predict values for Test dataset
    y_pred = model.predict(X_test)

    # Print the evaluation metrics for the dataset.
    print(classification_report(y_test, y_pred))
    
    # Compute and plot the Confusion matrix
    cf_matrix = confusion_matrix(y_test, y_pred)

    categories  = ['Negative','Positive']
    group_names = ['True Neg','False Pos', 'False Neg','True Pos']
    group_percentages = ['{0:.2%}'.format(value) for value in cf_matrix.flatten() / np.sum(cf_matrix)]

    labels = [f'{v1}\n{v2}' for v1, v2 in zip(group_names,group_percentages)]
    labels = np.asarray(labels).reshape(2,2)

    sns.heatmap(cf_matrix, annot = labels, cmap = 'Blues',fmt = '',
                xticklabels = categories, yticklabels = categories)

    plt.xlabel("Predicted values", fontdict = {'size':14}, labelpad = 10)
    plt.ylabel("Actual values"   , fontdict = {'size':14}, labelpad = 10)
    plt.title ("Confusion Matrix", fontdict = {'size':18}, pad = 20)
MahmoudNoor