R Basis -Syntax
> x <- 1:6 # Create a numeric vector in the current environment
> y <- x^2 # Create vector based on the values in x.
> print(y) # Print the vector’s contents.
[1] 1 4 9 16 25 36
> z <- x + y # Create a new vector that is the sum of x and y
> z # Return the contents of z to the current environment.
[1] 2 6 12 20 30 42
> z_matrix <- matrix(z, nrow=3) # Create a new matrix that turns the vector z into a 3x2 matrix object
> z_matrix
[,1] [,2]
[1,] 2 20
[2,] 6 30
[3,] 12 42
> 2*t(z_matrix)-2 # Transpose the matrix, multiply every element by 2, subtract 2 from each element in the matrix, and return the results to the terminal.
[,1] [,2] [,3]
[1,] 2 10 22
[2,] 38 58 82
> new_df <- data.frame(t(z_matrix), row.names=c('A','B')) # Create a new data.frame object that contains the data from a transposed z_matrix, with row names 'A' and 'B'
> names(new_df) <- c('X','Y','Z') # Set the column names of new_df as X, Y, and Z.
> print(new_df) # Print the current results.
X Y Z
A 2 6 12
B 20 30 42
> new_df$Z # Output the Z column
[1] 12 42
> new_df$Z==new_df['Z'] && new_df[3]==new_df$Z # The data.frame column Z can be accessed using $Z, ['Z'], or [3] syntax, and the values are the same.
[1] TRUE
> attributes(new_df) # Print attributes information about the new_df object
$names
[1] "X" "Y" "Z"
$row.names
[1] "A" "B"
$class
[1] "data.frame"
> attributes(new_df)$row.names <- c('one','two') # Access and then change the row.names attribute; can also be done using rownames()
> new_df
X Y Z
one 2 6 12
two 20 30 42
Old-fashioned Okapi