Wie können Sie sich eine Quaternion vorstellen?

24

Wenn ich eine dreidimensionale Rotationsmatrix oder Skalierungsmatrix visualisiere, visualisiere ich sie als drei Achsen.

Gibt es eine ähnliche Möglichkeit, eine Rotationsquaternion zu visualisieren?

CiscoIPPhone
quelle
Es ist nicht wirklich eine Visualisierung, aber jemand hat sie mir einmal als "komplexe Zahlen: 2 :: Quaternionen: 4"
Coderanger 26.10.10

Antworten:

19

Das Buch "Visualizing Quaternions" umfasst insgesamt 600 Seiten: http://books.google.ca/books?id=CoUB09xzme4C&lpg=PP1&ots=uEdJHsni9y&dq=Visualizing%20Quaternions&pg=PP1#v=onepage&q&f=false

Das Buch ist eigentlich ziemlich gut und deckt ein breites Themenspektrum ab. Es beginnt mit einer guten Einführung in die spielbezogene lineare Algebra. Es geht um Matrizen und Vektoren, ihre Mängel und warum Sie Quaternionen verwenden möchten. Dann wird erklärt, was sie sind und wie man sie nutzt. Wenn Sie interessiert sind, können Sie es abholen: http://www.amazon.com/Visualizing-Quaternions-Kaufmann-Interactive-Technology/dp/0120884003

Zfedoran
quelle
1
+1 für "Visualizing Quaternions", es ist ein tolles Buch, haben es auch sehr zu empfehlen
Maik Semder
7
Während ein schönes Buch, wenn dieser Link jemals schlecht geht, wird diese Antwort völlig nutzlos sein. Ich schlage vor, dass Sie in Ihrer Antwort einige Informationen zur Visualisierung von Quaternionen angeben.
MichaelHouse
10

Eine der Visualisierungsmethoden, die ich mag, ist die Darstellung von Quaternion (Orientierung im 3D-Raum) als Vektor ( x, y, z- Komponenten) + Spin (die Drehung um diesen Vektor, gespeichert in w- Komponente).

Wenn Sie nach einem Online-Visualisierer für Quaternionen suchen , können Sie immer wolframalpha verwenden:

http://www.wolframalpha.com/input/?i=quaternion%3A+0%2B2i-j-3k&lk=3

Werfen Sie einen Blick auf die Visualisierung mit der Bezeichnung "entsprechende 3D-Drehung" (3D-Vektor + Spin):

Bildbeschreibung hier eingeben

Ich fand es nützlich, während ich mit Quaternionen in meiner 3D-Engine arbeitete.

PolGraphic
quelle
1
Punktgenaue Antwort! Auf diese Weise können die Leute auch den SLERP-Mechanismus verstehen, weil sie Quaternionen auf einer 3D-Kugel abbilden können, während der Spin als skalare Rotationsbewegung durch diesen Vektor gesehen werden kann (schätze, es ist etwas ähnlich dem, was manche Mathematiker einen Rotor nennen -> geometrische Gebra). net / quaternions.html ).
Teodron
7

Ich visualisiere meine Quaternionen als dreidimensionale Vektoren (Richtung + Länge) mit etwas seitlichem Abstand, um die Drehung entlang der Vektorachse darstellen zu können.

Es ist eine gebräuchliche Methode, Rotationsvektoren in der Physik zu visualisieren, aber der Name entgeht mir.

drxzcl
quelle
3
Winkelachsendrehung?
CiscoIPPhone
4

Sie benötigen nicht unbedingt eine alternative Visualisierungstechnik für Quaternionen und Matrizen.

Wenn Sie Ihre Rotationsmatrix als das 3-Achsen-Gizmo visualisieren, ist das, was Sie wirklich visualisieren, eine Orientierung. Da die Quaternion auch eine Orientierung darstellt, sollten Sie erwägen, Ihr 3-Achsen-Gizmo weiterhin als Augensichtobjekt Ihres Geistes zu verwenden.

In seltenen Fällen müssen Sie sowohl für Quaternionen als auch für Matrizen die tatsächlichen Komponentenwerte in Ihre Visualisierung einbeziehen. Nur weil sich die Komponentenwerte der Quaternion nicht auf Ihre 3-Achsen-Gizmo beziehen, bedeutet dies nicht, dass sie nicht für die Visualisierung verwendet werden können Zwecke.

Steve H
quelle
2

Sie können, aber es wird schwierig. Anstelle von drei separaten Rotationsachsen oder drei Kardanringen, die sich jeweils unabhängig voneinander bewegen, müssen Sie sich eine Quaternion als Beschreibung des vollständigen dreidimensionalen Rotationswinkels und der Größe gleichzeitig als eine einzige Beschreibung der gesamten Translation vorstellen .

http://en.wikipedia.org/wiki/Quaternion_rotation

Quaternions sind definitiv kein Bereich, in dem ich mich wirklich gut auskenne, aber diese Wiki-Seite enthält einige anständige Informationen. Wikipedia spricht zwar von Rotationen auf einer Hypersphäre, wird aber etwas verwirrend. Viel Glück!

SpacePrez
quelle
2

Wie Sie wissen, basiert Quaternion auf komplexen Zahlen und repräsentiert die Drehung der 4D-Kugel in der 4D-Dimension. Sie können es also nicht so visualisieren, wie es ist. Ich sehe, dass du es auch weißt. Und nur eine Wahl ist die Visualisierung des Ergebnisses der Rotation. Zum Beispiel Ergebnis der Rotation der Basis; Oder Sie können eine 3D-Kugel rendern und sie mit der geschichteten Rotationstemperatur jeder Achse malen. Viel Glück!

Edward83
quelle