Angenommen, ich habe den folgenden Datenrahmen:
> myvec
name order_no
1 Amy 12
2 Jack 14
3 Jack 16
4 Dave 11
5 Amy 12
6 Jack 16
7 Tom 19
8 Larry 22
9 Tom 19
10 Dave 11
11 Jack 17
12 Tom 20
13 Amy 23
14 Jack 16
Ich möchte die Anzahl der unterschiedlichen order_no
Werte für jeden zählen name
. Es sollte das folgende Ergebnis liefern:
name number_of_distinct_orders
Amy 2
Jack 3
Dave 1
Tom 2
Larry 1
Wie kann ich das machen?
r
dataframe
distinct-values
r-faq
Mehper C. Palavuzlar
quelle
quelle
sqldf
Sie tunsqldf("SELECT name,COUNT(distinct(order_no)) FROM myvec GROUP BY name")
Antworten:
Dies sollte den Trick tun:
ddply(myvec,~name,summarise,number_of_distinct_orders=length(unique(order_no)))
Dies erfordert Paket plyr.
quelle
Ein
data.table
Ansatzlibrary(data.table) DT <- data.table(myvec) DT[, .(number_of_distinct_orders = length(unique(order_no))), by = name]
data.table
v> = 1.9.5 hatuniqueN
jetzt eine eingebaute Funktionquelle
In können
dplyr
Sie verwenden,n_distinct
um " die Anzahl der eindeutigen Werte zu zählen ":quelle
Dies ist eine einfache Lösung mit der Funktion
aggregate
:aggregate(order_no ~ name, myvec, function(x) length(unique(x)))
quelle
Hier ist ein Benchmark von @ David Arenburg Lösung gibt sowie eine kurze Zusammenfassung einiger Lösungen hier gepostet ( @mnel , @Sven Hohenstein , @Henrik ):
library(dplyr) library(data.table) library(microbenchmark) library(tidyr) library(ggplot2) df <- mtcars DT <- as.data.table(df) DT_32k <- rbindlist(replicate(1e3, mtcars, simplify = FALSE)) df_32k <- as.data.frame(DT_32k) DT_32M <- rbindlist(replicate(1e6, mtcars, simplify = FALSE)) df_32M <- as.data.frame(DT_32M) bench <- microbenchmark( base_32 = aggregate(hp ~ cyl, df, function(x) length(unique(x))), base_32k = aggregate(hp ~ cyl, df_32k, function(x) length(unique(x))), base_32M = aggregate(hp ~ cyl, df_32M, function(x) length(unique(x))), dplyr_32 = summarise(group_by(df, cyl), count = n_distinct(hp)), dplyr_32k = summarise(group_by(df_32k, cyl), count = n_distinct(hp)), dplyr_32M = summarise(group_by(df_32M, cyl), count = n_distinct(hp)), data.table_32 = DT[, .(count = uniqueN(hp)), by = cyl], data.table_32k = DT_32k[, .(count = uniqueN(hp)), by = cyl], data.table_32M = DT_32M[, .(count = uniqueN(hp)), by = cyl], times = 10 )
Ergebnisse:
print(bench) # Unit: microseconds # expr min lq mean median uq max neval cld # base_32 816.153 1064.817 1.231248e+03 1.134542e+03 1263.152 2430.191 10 a # base_32k 38045.080 38618.383 3.976884e+04 3.962228e+04 40399.740 42825.633 10 a # base_32M 35065417.492 35143502.958 3.565601e+07 3.534793e+07 35802258.435 37015121.086 10 d # dplyr_32 2211.131 2292.499 1.211404e+04 2.370046e+03 2656.419 99510.280 10 a # dplyr_32k 3796.442 4033.207 4.434725e+03 4.159054e+03 4857.402 5514.646 10 a # dplyr_32M 1536183.034 1541187.073 1.580769e+06 1.565711e+06 1600732.034 1733709.195 10 b # data.table_32 403.163 413.253 5.156662e+02 5.197515e+02 619.093 628.430 10 a # data.table_32k 2208.477 2374.454 2.494886e+03 2.448170e+03 2557.604 3085.508 10 a # data.table_32M 2011155.330 2033037.689 2.074020e+06 2.052079e+06 2078231.776 2189809.835 10 c
Handlung:
as_tibble(bench) %>% group_by(expr) %>% summarise(time = median(time)) %>% separate(expr, c("framework", "nrow"), "_", remove = FALSE) %>% mutate(nrow = recode(nrow, "32" = 32, "32k" = 32e3, "32M" = 32e6), time = time / 1e3) %>% ggplot(aes(nrow, time, col = framework)) + geom_line() + scale_x_log10() + scale_y_log10() + ylab("microseconds")
Sitzungsinfo:
sessionInfo() # R version 3.4.1 (2017-06-30) # Platform: x86_64-pc-linux-gnu (64-bit) # Running under: Linux Mint 18 # # Matrix products: default # BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0 # LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0 # # locale: # [1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C LC_TIME=fr_FR.UTF-8 # [4] LC_COLLATE=fr_FR.UTF-8 LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8 # [7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C LC_ADDRESS=C # [10] LC_TELEPHONE=C LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C # # attached base packages: # [1] stats graphics grDevices utils datasets methods base # # other attached packages: # [1] ggplot2_2.2.1 tidyr_0.6.3 bindrcpp_0.2 stringr_1.2.0 # [5] microbenchmark_1.4-2.1 data.table_1.10.4 dplyr_0.7.1 # # loaded via a namespace (and not attached): # [1] Rcpp_0.12.11 compiler_3.4.1 plyr_1.8.4 bindr_0.1 tools_3.4.1 digest_0.6.12 # [7] tibble_1.3.3 gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.1 rlang_0.1.1 Matrix_1.2-10 # [13] mvtnorm_1.0-6 grid_3.4.1 glue_1.1.1 R6_2.2.2 survival_2.41-3 multcomp_1.4-6 # [19] TH.data_1.0-8 magrittr_1.5 scales_0.4.1 codetools_0.2-15 splines_3.4.1 MASS_7.3-47 # [25] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3 sandwich_2.3-4 stringi_1.1.5 lazyeval_0.2.0 # [31] munsell_0.4.3 zoo_1.8-0
quelle
Hier ist eine Lösung mit
sqldf
library("sqldf") myvec <- read.table(header=TRUE, text= " name order_no 1 Amy 12 2 Jack 14 3 Jack 16 4 Dave 11 5 Amy 12 6 Jack 16 7 Tom 19 8 Larry 22 9 Tom 19 10 Dave 11 11 Jack 17 12 Tom 20 13 Amy 23 14 Jack 16") sqldf("SELECT name,COUNT(distinct(order_no)) as number_of_distinct_orders FROM myvec GROUP BY name") # > sqldf("SELECT name,COUNT(distinct(order_no)) as number_of_distinct_orders FROM myvec GROUP BY name") # name number_of_distinct_orders # 1 Amy 2 # 2 Dave 1 # 3 Jack 3 # 4 Larry 1 # 5 Tom 2
quelle
Sie können einfach die eingebauten R-Funktionen
tapply
mit verwendenlength
tapply(myvec$order_no, myvec$name, FUN = function(x) length(unique(x)))
quelle
length(uniqe())
, wie in der Antwort von @ Sven. Davon abgesehen zeigt dies die richtige Verwendung vontapply
.Dies würde auch funktionieren, ist aber weniger beredt als die Plyr-Lösung:
x <- sapply(split(myvec, myvec$name), function(x) length(unique(x[, 2]))) data.frame(names=names(x), number_of_distinct_orders=x, row.names = NULL)
quelle
my.1 <- table(myvec) my.1[my.1 != 0] <- 1 rowSums(my.1)
quelle
rowSums(my.1)
instack
:stack(rowSums(my.1))[2:1]
einen Datenrahmen zurück zu bekommen.rowSums( table(myvec) != 0 )
Verwenden von
table
:library(magrittr) myvec %>% unique %>% '['(1) %>% table %>% as.data.frame %>% setNames(c("name","number_of_distinct_orders")) # name number_of_distinct_orders # 1 Amy 2 # 2 Dave 1 # 3 Jack 3 # 4 Larry 1 # 5 Tom 2
quelle
Ein paar Jahre alt ... obwohl ich ähnliche Anforderungen hatte und am Ende meine eigene Lösung schrieb. Hier bewerben:
x<-data.frame( "Name"=c("Amy","Jack","Jack","Dave","Amy","Jack","Tom","Larry","Tom","Dave","Jack","Tom","Amy","Jack"), "OrderNo"=c(12,14,16,11,12,16,19,22,19,11,17,20,23,16) ) table(sub("~.*","",unique(paste(x$Name,x$OrderNo,sep="~",collapse=NULL))))
Amy Dave Jack Larry Tom 2 1 3 1 2
quelle