Ich reproduziere die Ergebnisse in Abschnitt 4.2.1 von Grund auf
Grenzwahrscheinlichkeit aus der Gibbs-Ausgabe
Siddhartha Chib
Journal of the American Statistical Association, Bd. 90, Nr. 432 (Dez. 1995), S. 1313-1321.
Es ist eine Mischung aus Normalmodellen mit einer bekannten Anzahl von Komponenten.
Der Gibbs-Sampler für dieses Modell wird unter Verwendung der Datenerweiterungstechnik von Tanner und Wong implementiert. Eine Menge von Zuordnungsvariablen den Werten wird eingeführt, und wir geben an, dass und . Daraus folgt, dass die Integration über die die ursprüngliche Wahrscheinlichkeit (*) ergibt .
Der Datensatz besteht aus Geschwindigkeiten von Galaxien aus der Corona Borealis-Konstellation.
set.seed(1701)
x <- c( 9.172, 9.350, 9.483, 9.558, 9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927,
19.052, 19.070, 19.330, 19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856,
19.863, 19.914, 19.918, 19.973, 19.989, 20.166, 20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629,
20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209,
22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263, 23.484,
23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960,
26.995, 32.065, 32.789, 34.279 )
nn <- length(x)
Wir nehmen an, dass , die 's und die ' s a priori unabhängig sind mit μ j σ 2 j ( w 1 , … , w k ) ∼ D i r ( a 1 , … , a k )
k <- 3
mu0 <- 20
va0 <- 100
nu0 <- 6
de0 <- 40
a <- rep(1, k)
Nach dem Bayes-Theorem lauten die vollständigen Bedingungen in der mit
Ziel ist es, eine Schätzung für die marginale Wahrscheinlichkeit des Modells zu berechnen. Chibs Methode beginnt mit einem ersten Durchlauf des Gibbs-Samplers unter Verwendung der vollständigen Bedingungen.
burn_in <- 1000
run <- 15000
cat("First Gibbs run (full):\n")
N <- burn_in + run
w <- matrix(1, nrow = N, ncol = k)
mu <- matrix(0, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z <- matrix(1, nrow = N, ncol = nn)
n <- integer(k)
m <- numeric(k)
de <- numeric(k)
rdirichlet <- function(a) { y <- rgamma(length(a), a, 1); y / sum(y) }
pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
n <- tabulate(z[t-1,], nbins = k)
w[t,] <- rdirichlet(a + n)
m <- sapply(1:k, function(j) sum(x[z[t-1,]==j]))
m[n > 0] <- m[n > 0] / n[n > 0]
mu[t,] <- rnorm(k, mean = (n*m*va0+mu0*va[t-1,])/(n*va0+va[t-1,]), sd = sqrt(va0*va[t-1,]/(n*va0+va[t-1,])))
de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mu[t,j])^2))
va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mu[t,], sd = sqrt(va[t,]), log = TRUE))))
setTxtProgressBar(pb, t)
}
close(pb)
Aus diesem ersten Lauf erhalten wir einen ungefähren Punkt der maximalen Wahrscheinlichkeit. Da die Wahrscheinlichkeit tatsächlich unbegrenzt ist, ergibt dieses Verfahren wahrscheinlich eine ungefähre lokale MAP.
w <- w[(burn_in+1):N,]
mu <- mu[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z <- z[(burn_in+1):N,]
N <- N - burn_in
log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))
ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))
ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]
Chibs Log-Schätzung der Grenzwahrscheinlichkeit lautet
Wir haben bereits die ersten beiden Semester.
log_prior <- function(w, mu, va) {
lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
+ sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
+ sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}
chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)
Die Rao-Blackwell-Schätzung von ist und wird leicht erhalten vom ersten Gibbslauf.
pi.mu_va.z.x <- function(mu, va, z) {
n <- tabulate(z, nbins = k)
m <- sapply(1:k, function(j) sum(x[z==j]))
m[n > 0] <- m[n > 0] / n[n > 0]
exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,]))))
Die Rao-Blackwell-Schätzung von ist und wird aus einem zweiten reduzierten Gibbs-Lauf berechnet, in dem die nicht aktualisiert, sondern erstellt werden bei jedem Iterationsschritt gleich .
cat("Second Gibbs run (reduced):\n")
N <- burn_in + run
w <- matrix(1, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z <- matrix(1, nrow = N, ncol = nn)
pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
n <- tabulate(z[t-1,], nbins = k)
w[t,] <- rdirichlet(a + n)
de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mus[j])^2))
va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(va[t,]), log = TRUE))))
setTxtProgressBar(pb, t)
}
close(pb)
w <- w[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z <- z[(burn_in+1):N,]
N <- N - burn_in
pi.va_mu.z.x <- function(va, mu, z) {
n <- tabulate(z, nbins = k)
de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,]))))
In gleicher Weise wird die Rao-Blackwellized Schätzung von ist und wird aus einem dritten reduzierten Gibbs-Lauf berechnet, in dem die 's und die ' s nicht aktualisiert werden, sondern gleich und bei jedem Iterationsschritt.
cat("Third Gibbs run (reduced):\n")
N <- burn_in + run
w <- matrix(1, nrow = N, ncol = k)
z <- matrix(1, nrow = N, ncol = nn)
pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
n <- tabulate(z[t-1,], nbins = k)
w[t,] <- rdirichlet(a + n)
z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(vas), log = TRUE))))
setTxtProgressBar(pb, t)
}
close(pb)
w <- w[(burn_in+1):N,]
z <- z[(burn_in+1):N,]
N <- N - burn_in
pi.w_z.x <- function(w, z) {
n <- tabulate(z, nbins = k)
exp(lgamma(sum(a+n)) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,]))))
Nach alledem erhalten wir eine logarithmische Schätzung die größer ist als die von Chib gemeldete: mit Monte-Carlo-Fehler .
Um zu überprüfen, ob ich die Gibbs-Sampler irgendwie durcheinander gebracht habe, habe ich das Ganze mit RJAGS neu implementiert. Der folgende Code gibt die gleichen Ergebnisse.
x <- c( 9.172, 9.350, 9.483, 9.558, 9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927, 19.052, 19.070, 19.330,
19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856, 19.863, 19.914, 19.918, 19.973, 19.989, 20.166,
20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814,
21.921, 21.960, 22.185, 22.209, 22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263,
23.484, 23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960, 26.995, 32.065,
32.789, 34.279 )
library(rjags)
nn <- length(x)
k <- 3
mu0 <- 20
va0 <- 100
nu0 <- 6
de0 <- 40
a <- rep(1, k)
burn_in <- 10^3
N <- 10^4
full <- "
model {
for (i in 1:n) {
x[i] ~ dnorm(mu[z[i]], tau[z[i]])
z[i] ~ dcat(w[])
}
for (i in 1:k) {
mu[i] ~ dnorm(mu0, 1/va0)
tau[i] ~ dgamma(nu0/2, de0/2)
va[i] <- 1/tau[i]
}
w ~ ddirich(a)
}
"
data <- list(x = x, n = nn, k = k, mu0 = mu0, va0 = va0, nu0 = nu0, de0 = de0, a = a)
model <- jags.model(textConnection(full), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("mu", "va", "w", "z"), n.iter = N)
mu <- matrix(samples$mu, nrow = N, byrow = TRUE)
va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)
log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))
ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))
ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]
log_prior <- function(w, mu, va) {
lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
+ sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
+ sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}
chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)
cat("log-likelihood + log-prior =", chib, "\n")
pi.mu_va.z.x <- function(mu, va, z, x) {
n <- sapply(1:k, function(j) sum(z==j))
m <- sapply(1:k, function(j) sum(x[z==j]))
m[n > 0] <- m[n > 0] / n[n > 0]
exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,], x))))
cat("log-likelihood + log-prior - log-pi.mu_ =", chib, "\n")
fixed.mu <- "
model {
for (i in 1:n) {
x[i] ~ dnorm(mus[z[i]], tau[z[i]])
z[i] ~ dcat(w[])
}
for (i in 1:k) {
tau[i] ~ dgamma(nu0/2, de0/2)
va[i] <- 1/tau[i]
}
w ~ ddirich(a)
}
"
data <- list(x = x, n = nn, k = k, nu0 = nu0, de0 = de0, a = a, mus = mus)
model <- jags.model(textConnection(fixed.mu), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("va", "w", "z"), n.iter = N)
va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)
pi.va_mu.z.x <- function(va, mu, z, x) {
n <- sapply(1:k, function(j) sum(z==j))
de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,], x))))
cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ =", chib, "\n")
fixed.mu.and.va <- "
model {
for (i in 1:n) {
x[i] ~ dnorm(mus[z[i]], 1/vas[z[i]])
z[i] ~ dcat(w[])
}
w ~ ddirich(a)
}
"
data <- list(x = x, n = nn, a = a, mus = mus, vas = vas)
model <- jags.model(textConnection(fixed.mu.and.va), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("w", "z"), n.iter = N)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)
pi.w_z.x <- function(w, z, x) {
n <- sapply(1:k, function(j) sum(z==j))
exp(lgamma(sum(a)+nn) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,], x))))
cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ - log-pi.w_ =", chib, "\n")
Meine Frage ist, ob es in der obigen Beschreibung irgendwelche Missverständnisse der Methode von Chib oder irgendwelche Fehler in ihrer Implementierung gibt.
Antworten:
Im vorherigen Abschnitt ist ein kleiner Programmierfehler aufgetreten
wie es stattdessen sein sollte
Das erneute Ausführen des Codes auf diese Weise führt zu
Das ist nicht der Wert, der in Chib (1995) für diesen Fall erzeugt wurde! In Neals (1999) Reanalyse des Problems erwähnt er dies jedoch
Dies löst also das Diskrepanzproblem.
quelle